The axisymmetric love wave in elastic solids and its special properties
With the advances of material processing technology and miniaturization of mechanical devices and components, it is clear now that curvilinear coordinate systems in dealing with special configurations of elastic solids including cylinders are also naturally needed in the analytical process. By adopt...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2022, Vol.92 (3), p.649-655 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 655 |
---|---|
container_issue | 3 |
container_start_page | 649 |
container_title | Archive of applied mechanics (1991) |
container_volume | 92 |
creator | Bian, Chunlei Wang, Ji Xie, Longtao Zhang, Yangyang Li, Honglang Tian, Yahui |
description | With the advances of material processing technology and miniaturization of mechanical devices and components, it is clear now that curvilinear coordinate systems in dealing with special configurations of elastic solids including cylinders are also naturally needed in the analytical process. By adopting the cylindrical coordinates, it is found that the Love wave in semi-infinite solids possess the same velocity as in the Cartesian coordinates, but the displacement is dependent on radius near the origin and decaying slowly with the radius by exhibiting a strong contrast of the uniform displacement in the Cartesian formulation. Numerical examples show that the asymptotic approximation is accurate in one wavelength away from the origin, implying that solutions will be different only in the vicinity of the point of excitation. |
doi_str_mv | 10.1007/s00419-021-02082-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641881548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641881548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c8149ad95a79b3b07ad6cb92e07b86e7e9d114f9c28b74a405169ee1018a12843</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9WZJG2Toyy6Cgte1nNI21nN0m1r0lX33xut4M3DzMDwfsDD2CXCNQKUNxFAoclAYBrQIsMjNkMlRQaFxmM2AyNNhrmUp-wsxi0kfS5gxpbrV-Lu08fDbkdj8DVv-3fiHy4t33FqXRzTM_atbyJ3XcP9GHkcqPau5UPoBwqjp3jOTjaujXTxe-fs-f5uvXjIVk_Lx8XtKqslmjGrNSrjGpO70lSygtI1RV0ZQVBWuqCSTIOoNqYWuiqVU5BjYYgQUDsUWsk5u5pyU_XbnuJot_0-dKnSikKh1pgrnVRiUtWhjzHQxg7B71w4WAT7DcxOwGwCZn-AWUwmOZliEncvFP6i_3F9AUORbT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641881548</pqid></control><display><type>article</type><title>The axisymmetric love wave in elastic solids and its special properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Bian, Chunlei ; Wang, Ji ; Xie, Longtao ; Zhang, Yangyang ; Li, Honglang ; Tian, Yahui</creator><creatorcontrib>Bian, Chunlei ; Wang, Ji ; Xie, Longtao ; Zhang, Yangyang ; Li, Honglang ; Tian, Yahui</creatorcontrib><description>With the advances of material processing technology and miniaturization of mechanical devices and components, it is clear now that curvilinear coordinate systems in dealing with special configurations of elastic solids including cylinders are also naturally needed in the analytical process. By adopting the cylindrical coordinates, it is found that the Love wave in semi-infinite solids possess the same velocity as in the Cartesian coordinates, but the displacement is dependent on radius near the origin and decaying slowly with the radius by exhibiting a strong contrast of the uniform displacement in the Cartesian formulation. Numerical examples show that the asymptotic approximation is accurate in one wavelength away from the origin, implying that solutions will be different only in the vicinity of the point of excitation.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-021-02082-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cartesian coordinates ; Classical Mechanics ; Cylindrical coordinates ; Decay rate ; Engineering ; Love waves ; Mechanical devices ; Miniaturization ; Spherical coordinates ; Technical Notes ; Theoretical and Applied Mechanics</subject><ispartof>Archive of applied mechanics (1991), 2022, Vol.92 (3), p.649-655</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c8149ad95a79b3b07ad6cb92e07b86e7e9d114f9c28b74a405169ee1018a12843</citedby><cites>FETCH-LOGICAL-c319t-c8149ad95a79b3b07ad6cb92e07b86e7e9d114f9c28b74a405169ee1018a12843</cites><orcidid>0000-0002-0724-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-021-02082-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-021-02082-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Bian, Chunlei</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Xie, Longtao</creatorcontrib><creatorcontrib>Zhang, Yangyang</creatorcontrib><creatorcontrib>Li, Honglang</creatorcontrib><creatorcontrib>Tian, Yahui</creatorcontrib><title>The axisymmetric love wave in elastic solids and its special properties</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>With the advances of material processing technology and miniaturization of mechanical devices and components, it is clear now that curvilinear coordinate systems in dealing with special configurations of elastic solids including cylinders are also naturally needed in the analytical process. By adopting the cylindrical coordinates, it is found that the Love wave in semi-infinite solids possess the same velocity as in the Cartesian coordinates, but the displacement is dependent on radius near the origin and decaying slowly with the radius by exhibiting a strong contrast of the uniform displacement in the Cartesian formulation. Numerical examples show that the asymptotic approximation is accurate in one wavelength away from the origin, implying that solutions will be different only in the vicinity of the point of excitation.</description><subject>Cartesian coordinates</subject><subject>Classical Mechanics</subject><subject>Cylindrical coordinates</subject><subject>Decay rate</subject><subject>Engineering</subject><subject>Love waves</subject><subject>Mechanical devices</subject><subject>Miniaturization</subject><subject>Spherical coordinates</subject><subject>Technical Notes</subject><subject>Theoretical and Applied Mechanics</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9WZJG2Toyy6Cgte1nNI21nN0m1r0lX33xut4M3DzMDwfsDD2CXCNQKUNxFAoclAYBrQIsMjNkMlRQaFxmM2AyNNhrmUp-wsxi0kfS5gxpbrV-Lu08fDbkdj8DVv-3fiHy4t33FqXRzTM_atbyJ3XcP9GHkcqPau5UPoBwqjp3jOTjaujXTxe-fs-f5uvXjIVk_Lx8XtKqslmjGrNSrjGpO70lSygtI1RV0ZQVBWuqCSTIOoNqYWuiqVU5BjYYgQUDsUWsk5u5pyU_XbnuJot_0-dKnSikKh1pgrnVRiUtWhjzHQxg7B71w4WAT7DcxOwGwCZn-AWUwmOZliEncvFP6i_3F9AUORbT0</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bian, Chunlei</creator><creator>Wang, Ji</creator><creator>Xie, Longtao</creator><creator>Zhang, Yangyang</creator><creator>Li, Honglang</creator><creator>Tian, Yahui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0724-7538</orcidid></search><sort><creationdate>2022</creationdate><title>The axisymmetric love wave in elastic solids and its special properties</title><author>Bian, Chunlei ; Wang, Ji ; Xie, Longtao ; Zhang, Yangyang ; Li, Honglang ; Tian, Yahui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c8149ad95a79b3b07ad6cb92e07b86e7e9d114f9c28b74a405169ee1018a12843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cartesian coordinates</topic><topic>Classical Mechanics</topic><topic>Cylindrical coordinates</topic><topic>Decay rate</topic><topic>Engineering</topic><topic>Love waves</topic><topic>Mechanical devices</topic><topic>Miniaturization</topic><topic>Spherical coordinates</topic><topic>Technical Notes</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Chunlei</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Xie, Longtao</creatorcontrib><creatorcontrib>Zhang, Yangyang</creatorcontrib><creatorcontrib>Li, Honglang</creatorcontrib><creatorcontrib>Tian, Yahui</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Chunlei</au><au>Wang, Ji</au><au>Xie, Longtao</au><au>Zhang, Yangyang</au><au>Li, Honglang</au><au>Tian, Yahui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The axisymmetric love wave in elastic solids and its special properties</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2022</date><risdate>2022</risdate><volume>92</volume><issue>3</issue><spage>649</spage><epage>655</epage><pages>649-655</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>With the advances of material processing technology and miniaturization of mechanical devices and components, it is clear now that curvilinear coordinate systems in dealing with special configurations of elastic solids including cylinders are also naturally needed in the analytical process. By adopting the cylindrical coordinates, it is found that the Love wave in semi-infinite solids possess the same velocity as in the Cartesian coordinates, but the displacement is dependent on radius near the origin and decaying slowly with the radius by exhibiting a strong contrast of the uniform displacement in the Cartesian formulation. Numerical examples show that the asymptotic approximation is accurate in one wavelength away from the origin, implying that solutions will be different only in the vicinity of the point of excitation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-021-02082-1</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0724-7538</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2022, Vol.92 (3), p.649-655 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_journals_2641881548 |
source | Springer Nature - Complete Springer Journals |
subjects | Cartesian coordinates Classical Mechanics Cylindrical coordinates Decay rate Engineering Love waves Mechanical devices Miniaturization Spherical coordinates Technical Notes Theoretical and Applied Mechanics |
title | The axisymmetric love wave in elastic solids and its special properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20axisymmetric%20love%20wave%20in%20elastic%20solids%20and%20its%20special%20properties&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Bian,%20Chunlei&rft.date=2022&rft.volume=92&rft.issue=3&rft.spage=649&rft.epage=655&rft.pages=649-655&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-021-02082-1&rft_dat=%3Cproquest_cross%3E2641881548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641881548&rft_id=info:pmid/&rfr_iscdi=true |