Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)

The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of Artemisia tangutica Pamp. was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biológia 2022-04, Vol.77 (4), p.915-930
Hauptverfasser: Yu, Jingya, Xia, Mingze, Wang, Yongcui, Chi, Xiaofeng, Xu, Hao, Chen, Shilong, Zhang, Faqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 930
container_issue 4
container_start_page 915
container_title Biológia
container_volume 77
creator Yu, Jingya
Xia, Mingze
Wang, Yongcui
Chi, Xiaofeng
Xu, Hao
Chen, Shilong
Zhang, Faqi
description The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of Artemisia tangutica Pamp. was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of A. tangutica was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in Artemisia showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of Artemisia have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of Artemisia and 12 outgroups recovered Sect. Viscidipubes , embedded in Sect. Artemisia . The subgenus Artemisia revealed a polyphyletic nature, however, the subgenus Dracunculus is monophyletic. This study provides a better understanding of species identification and phylogeny of Artemisia .
doi_str_mv 10.1007/s11756-021-00951-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641881213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641881213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsscBgeI7jxBmrii-pEgMwW0780qRK4mC7A_-etEFiY3rDPfc-6RByzeGeA-QPgfNcZgwSzgAKyVlyQhZciIwVMhOnZAEAGROg1Dm5CGEHkOYS-II0743zkZrB0s4NW-rR2ECrpnPejZ0JkW5xcD1SEwL2ZddiOMJj8925Y9RWgbqarnzEvg2todEM231sK0NvVyGiNxUavLskZ7XpAl793iX5fHr8WL-wzdvz63q1YZXgRWQSMReyzrmyleQSitQqBKsKpWQljbIlmBKErXmRW5klSqZ1meEE1QDKJmJJbubd0buvPYaod27vh-mlTrKUK8WTycuSJDNVeReCx1qPvu2N_9Yc9MGono3qyag-GtWHaTGXwgQPW_R_0_-0fgBY3noA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641881213</pqid></control><display><type>article</type><title>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Jingya ; Xia, Mingze ; Wang, Yongcui ; Chi, Xiaofeng ; Xu, Hao ; Chen, Shilong ; Zhang, Faqi</creator><creatorcontrib>Yu, Jingya ; Xia, Mingze ; Wang, Yongcui ; Chi, Xiaofeng ; Xu, Hao ; Chen, Shilong ; Zhang, Faqi</creatorcontrib><description>The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of Artemisia tangutica Pamp. was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of A. tangutica was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in Artemisia showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of Artemisia have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of Artemisia and 12 outgroups recovered Sect. Viscidipubes , embedded in Sect. Artemisia . The subgenus Artemisia revealed a polyphyletic nature, however, the subgenus Dracunculus is monophyletic. This study provides a better understanding of species identification and phylogeny of Artemisia .</description><identifier>ISSN: 0006-3088</identifier><identifier>EISSN: 1336-9563</identifier><identifier>DOI: 10.1007/s11756-021-00951-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Assembly ; Biomedical and Life Sciences ; Cell Biology ; Chloroplasts ; Comparative analysis ; Conserved sequence ; Evolutionary conservation ; Gene duplication ; Genes ; Genomes ; Life Sciences ; Microbiology ; Nucleotides ; Original Article ; Phylogeny ; Plant Sciences ; Resource conservation ; rRNA ; Species ; tRNA ; Zoology</subject><ispartof>Biológia, 2022-04, Vol.77 (4), p.915-930</ispartof><rights>The Author(s), under exclusive licence to Plant Science and Biodiversity Centre, Slovak Academy of Sciences (SAS), Institute of Zoology, Slovak Academy of Sciences (SAS), Institute of Molecular Biology, Slovak Academy of Sciences (SAS) 2022</rights><rights>The Author(s), under exclusive licence to Plant Science and Biodiversity Centre, Slovak Academy of Sciences (SAS), Institute of Zoology, Slovak Academy of Sciences (SAS), Institute of Molecular Biology, Slovak Academy of Sciences (SAS) 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</citedby><cites>FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</cites><orcidid>0000-0002-5553-6078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11756-021-00951-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11756-021-00951-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yu, Jingya</creatorcontrib><creatorcontrib>Xia, Mingze</creatorcontrib><creatorcontrib>Wang, Yongcui</creatorcontrib><creatorcontrib>Chi, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Chen, Shilong</creatorcontrib><creatorcontrib>Zhang, Faqi</creatorcontrib><title>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</title><title>Biológia</title><addtitle>Biologia</addtitle><description>The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of Artemisia tangutica Pamp. was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of A. tangutica was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in Artemisia showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of Artemisia have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of Artemisia and 12 outgroups recovered Sect. Viscidipubes , embedded in Sect. Artemisia . The subgenus Artemisia revealed a polyphyletic nature, however, the subgenus Dracunculus is monophyletic. This study provides a better understanding of species identification and phylogeny of Artemisia .</description><subject>Assembly</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chloroplasts</subject><subject>Comparative analysis</subject><subject>Conserved sequence</subject><subject>Evolutionary conservation</subject><subject>Gene duplication</subject><subject>Genes</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Nucleotides</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Plant Sciences</subject><subject>Resource conservation</subject><subject>rRNA</subject><subject>Species</subject><subject>tRNA</subject><subject>Zoology</subject><issn>0006-3088</issn><issn>1336-9563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsscBgeI7jxBmrii-pEgMwW0780qRK4mC7A_-etEFiY3rDPfc-6RByzeGeA-QPgfNcZgwSzgAKyVlyQhZciIwVMhOnZAEAGROg1Dm5CGEHkOYS-II0743zkZrB0s4NW-rR2ECrpnPejZ0JkW5xcD1SEwL2ZddiOMJj8925Y9RWgbqarnzEvg2todEM231sK0NvVyGiNxUavLskZ7XpAl793iX5fHr8WL-wzdvz63q1YZXgRWQSMReyzrmyleQSitQqBKsKpWQljbIlmBKErXmRW5klSqZ1meEE1QDKJmJJbubd0buvPYaod27vh-mlTrKUK8WTycuSJDNVeReCx1qPvu2N_9Yc9MGono3qyag-GtWHaTGXwgQPW_R_0_-0fgBY3noA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yu, Jingya</creator><creator>Xia, Mingze</creator><creator>Wang, Yongcui</creator><creator>Chi, Xiaofeng</creator><creator>Xu, Hao</creator><creator>Chen, Shilong</creator><creator>Zhang, Faqi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5553-6078</orcidid></search><sort><creationdate>20220401</creationdate><title>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</title><author>Yu, Jingya ; Xia, Mingze ; Wang, Yongcui ; Chi, Xiaofeng ; Xu, Hao ; Chen, Shilong ; Zhang, Faqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chloroplasts</topic><topic>Comparative analysis</topic><topic>Conserved sequence</topic><topic>Evolutionary conservation</topic><topic>Gene duplication</topic><topic>Genes</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Nucleotides</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Plant Sciences</topic><topic>Resource conservation</topic><topic>rRNA</topic><topic>Species</topic><topic>tRNA</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jingya</creatorcontrib><creatorcontrib>Xia, Mingze</creatorcontrib><creatorcontrib>Wang, Yongcui</creatorcontrib><creatorcontrib>Chi, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Chen, Shilong</creatorcontrib><creatorcontrib>Zhang, Faqi</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biológia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jingya</au><au>Xia, Mingze</au><au>Wang, Yongcui</au><au>Chi, Xiaofeng</au><au>Xu, Hao</au><au>Chen, Shilong</au><au>Zhang, Faqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</atitle><jtitle>Biológia</jtitle><stitle>Biologia</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>77</volume><issue>4</issue><spage>915</spage><epage>930</epage><pages>915-930</pages><issn>0006-3088</issn><eissn>1336-9563</eissn><abstract>The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of Artemisia tangutica Pamp. was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of A. tangutica was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in Artemisia showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of Artemisia have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of Artemisia and 12 outgroups recovered Sect. Viscidipubes , embedded in Sect. Artemisia . The subgenus Artemisia revealed a polyphyletic nature, however, the subgenus Dracunculus is monophyletic. This study provides a better understanding of species identification and phylogeny of Artemisia .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11756-021-00951-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5553-6078</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3088
ispartof Biológia, 2022-04, Vol.77 (4), p.915-930
issn 0006-3088
1336-9563
language eng
recordid cdi_proquest_journals_2641881213
source SpringerLink Journals - AutoHoldings
subjects Assembly
Biomedical and Life Sciences
Cell Biology
Chloroplasts
Comparative analysis
Conserved sequence
Evolutionary conservation
Gene duplication
Genes
Genomes
Life Sciences
Microbiology
Nucleotides
Original Article
Phylogeny
Plant Sciences
Resource conservation
rRNA
Species
tRNA
Zoology
title Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20and%20long%20reads%20chloroplast%20genome%20assemblies%20and%20phylogenomics%20of%20Artemisia%20tangutica%20(Asteraceae)&rft.jtitle=Biolo%CC%81gia&rft.au=Yu,%20Jingya&rft.date=2022-04-01&rft.volume=77&rft.issue=4&rft.spage=915&rft.epage=930&rft.pages=915-930&rft.issn=0006-3088&rft.eissn=1336-9563&rft_id=info:doi/10.1007/s11756-021-00951-2&rft_dat=%3Cproquest_cross%3E2641881213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641881213&rft_id=info:pmid/&rfr_iscdi=true