Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)
The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of Artemisia tangutica Pamp. was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the...
Gespeichert in:
Veröffentlicht in: | Biológia 2022-04, Vol.77 (4), p.915-930 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 930 |
---|---|
container_issue | 4 |
container_start_page | 915 |
container_title | Biológia |
container_volume | 77 |
creator | Yu, Jingya Xia, Mingze Wang, Yongcui Chi, Xiaofeng Xu, Hao Chen, Shilong Zhang, Faqi |
description | The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of
Artemisia tangutica Pamp.
was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of
A. tangutica
was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in
Artemisia
showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of
Artemisia
have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of
Artemisia
and 12 outgroups recovered Sect.
Viscidipubes
, embedded in Sect.
Artemisia
. The subgenus
Artemisia
revealed a polyphyletic nature, however, the subgenus
Dracunculus
is monophyletic. This study provides a better understanding of species identification and phylogeny of
Artemisia
. |
doi_str_mv | 10.1007/s11756-021-00951-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641881213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641881213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsscBgeI7jxBmrii-pEgMwW0780qRK4mC7A_-etEFiY3rDPfc-6RByzeGeA-QPgfNcZgwSzgAKyVlyQhZciIwVMhOnZAEAGROg1Dm5CGEHkOYS-II0743zkZrB0s4NW-rR2ECrpnPejZ0JkW5xcD1SEwL2ZddiOMJj8925Y9RWgbqarnzEvg2todEM231sK0NvVyGiNxUavLskZ7XpAl793iX5fHr8WL-wzdvz63q1YZXgRWQSMReyzrmyleQSitQqBKsKpWQljbIlmBKErXmRW5klSqZ1meEE1QDKJmJJbubd0buvPYaod27vh-mlTrKUK8WTycuSJDNVeReCx1qPvu2N_9Yc9MGono3qyag-GtWHaTGXwgQPW_R_0_-0fgBY3noA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641881213</pqid></control><display><type>article</type><title>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Jingya ; Xia, Mingze ; Wang, Yongcui ; Chi, Xiaofeng ; Xu, Hao ; Chen, Shilong ; Zhang, Faqi</creator><creatorcontrib>Yu, Jingya ; Xia, Mingze ; Wang, Yongcui ; Chi, Xiaofeng ; Xu, Hao ; Chen, Shilong ; Zhang, Faqi</creatorcontrib><description>The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of
Artemisia tangutica Pamp.
was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of
A. tangutica
was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in
Artemisia
showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of
Artemisia
have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of
Artemisia
and 12 outgroups recovered Sect.
Viscidipubes
, embedded in Sect.
Artemisia
. The subgenus
Artemisia
revealed a polyphyletic nature, however, the subgenus
Dracunculus
is monophyletic. This study provides a better understanding of species identification and phylogeny of
Artemisia
.</description><identifier>ISSN: 0006-3088</identifier><identifier>EISSN: 1336-9563</identifier><identifier>DOI: 10.1007/s11756-021-00951-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Assembly ; Biomedical and Life Sciences ; Cell Biology ; Chloroplasts ; Comparative analysis ; Conserved sequence ; Evolutionary conservation ; Gene duplication ; Genes ; Genomes ; Life Sciences ; Microbiology ; Nucleotides ; Original Article ; Phylogeny ; Plant Sciences ; Resource conservation ; rRNA ; Species ; tRNA ; Zoology</subject><ispartof>Biológia, 2022-04, Vol.77 (4), p.915-930</ispartof><rights>The Author(s), under exclusive licence to Plant Science and Biodiversity Centre, Slovak Academy of Sciences (SAS), Institute of Zoology, Slovak Academy of Sciences (SAS), Institute of Molecular Biology, Slovak Academy of Sciences (SAS) 2022</rights><rights>The Author(s), under exclusive licence to Plant Science and Biodiversity Centre, Slovak Academy of Sciences (SAS), Institute of Zoology, Slovak Academy of Sciences (SAS), Institute of Molecular Biology, Slovak Academy of Sciences (SAS) 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</citedby><cites>FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</cites><orcidid>0000-0002-5553-6078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11756-021-00951-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11756-021-00951-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yu, Jingya</creatorcontrib><creatorcontrib>Xia, Mingze</creatorcontrib><creatorcontrib>Wang, Yongcui</creatorcontrib><creatorcontrib>Chi, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Chen, Shilong</creatorcontrib><creatorcontrib>Zhang, Faqi</creatorcontrib><title>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</title><title>Biológia</title><addtitle>Biologia</addtitle><description>The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of
Artemisia tangutica Pamp.
was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of
A. tangutica
was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in
Artemisia
showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of
Artemisia
have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of
Artemisia
and 12 outgroups recovered Sect.
Viscidipubes
, embedded in Sect.
Artemisia
. The subgenus
Artemisia
revealed a polyphyletic nature, however, the subgenus
Dracunculus
is monophyletic. This study provides a better understanding of species identification and phylogeny of
Artemisia
.</description><subject>Assembly</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chloroplasts</subject><subject>Comparative analysis</subject><subject>Conserved sequence</subject><subject>Evolutionary conservation</subject><subject>Gene duplication</subject><subject>Genes</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Nucleotides</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Plant Sciences</subject><subject>Resource conservation</subject><subject>rRNA</subject><subject>Species</subject><subject>tRNA</subject><subject>Zoology</subject><issn>0006-3088</issn><issn>1336-9563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsscBgeI7jxBmrii-pEgMwW0780qRK4mC7A_-etEFiY3rDPfc-6RByzeGeA-QPgfNcZgwSzgAKyVlyQhZciIwVMhOnZAEAGROg1Dm5CGEHkOYS-II0743zkZrB0s4NW-rR2ECrpnPejZ0JkW5xcD1SEwL2ZddiOMJj8925Y9RWgbqarnzEvg2todEM231sK0NvVyGiNxUavLskZ7XpAl793iX5fHr8WL-wzdvz63q1YZXgRWQSMReyzrmyleQSitQqBKsKpWQljbIlmBKErXmRW5klSqZ1meEE1QDKJmJJbubd0buvPYaod27vh-mlTrKUK8WTycuSJDNVeReCx1qPvu2N_9Yc9MGono3qyag-GtWHaTGXwgQPW_R_0_-0fgBY3noA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yu, Jingya</creator><creator>Xia, Mingze</creator><creator>Wang, Yongcui</creator><creator>Chi, Xiaofeng</creator><creator>Xu, Hao</creator><creator>Chen, Shilong</creator><creator>Zhang, Faqi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5553-6078</orcidid></search><sort><creationdate>20220401</creationdate><title>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</title><author>Yu, Jingya ; Xia, Mingze ; Wang, Yongcui ; Chi, Xiaofeng ; Xu, Hao ; Chen, Shilong ; Zhang, Faqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ee735f718dc515094d8e0d89885c5a8db0ab03df197d562854fb6ed8ef008d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chloroplasts</topic><topic>Comparative analysis</topic><topic>Conserved sequence</topic><topic>Evolutionary conservation</topic><topic>Gene duplication</topic><topic>Genes</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Nucleotides</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Plant Sciences</topic><topic>Resource conservation</topic><topic>rRNA</topic><topic>Species</topic><topic>tRNA</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jingya</creatorcontrib><creatorcontrib>Xia, Mingze</creatorcontrib><creatorcontrib>Wang, Yongcui</creatorcontrib><creatorcontrib>Chi, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Chen, Shilong</creatorcontrib><creatorcontrib>Zhang, Faqi</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biológia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jingya</au><au>Xia, Mingze</au><au>Wang, Yongcui</au><au>Chi, Xiaofeng</au><au>Xu, Hao</au><au>Chen, Shilong</au><au>Zhang, Faqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)</atitle><jtitle>Biológia</jtitle><stitle>Biologia</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>77</volume><issue>4</issue><spage>915</spage><epage>930</epage><pages>915-930</pages><issn>0006-3088</issn><eissn>1336-9563</eissn><abstract>The accurate chloroplast genome is the basis of its utilization in phylogeny, species evolution, and resource conservation. Here, the chloroplast genome of
Artemisia tangutica Pamp.
was sequenced and assembled with Illumina and PacBio. After PCR verification, the hybrid assembly result produced the most accurate chloroplast genome, assembly results of only short reads and only long reads were showed different blemishes. The chloroplast genome of
A. tangutica
was 151, 140 bp, including a large single copy (LSC, 82, 885 bp), a small single copy (SSC, 18, 337 bp), and a pair of reverse repeat regions (IRs, 24, 959 bp). Total 115 genes and 20 duplicate genes were annotated, including 80 protein-coding genes, four rRNA genes, and 37 tRNA genes. We observed 78 long repeat sequences and 201 simple repeat sequences, and their distribution in the genome was different to some extent. Genome comparative analysis indicated that the coding regions of chloroplast genomes of six species in
Artemisia
showed a high degree of sequence similarity, while the intergenic spacers showed variations. The photosystems II (PSA) and large subunit of ribosome (RPS) gene of
Artemisia
have a high nucleotide substitution rate. Phylogenetic relationship including 34 species of
Artemisia
and 12 outgroups recovered Sect.
Viscidipubes
, embedded in Sect.
Artemisia
. The subgenus
Artemisia
revealed a polyphyletic nature, however, the subgenus
Dracunculus
is monophyletic. This study provides a better understanding of species identification and phylogeny of
Artemisia
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11756-021-00951-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5553-6078</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3088 |
ispartof | Biológia, 2022-04, Vol.77 (4), p.915-930 |
issn | 0006-3088 1336-9563 |
language | eng |
recordid | cdi_proquest_journals_2641881213 |
source | SpringerLink Journals - AutoHoldings |
subjects | Assembly Biomedical and Life Sciences Cell Biology Chloroplasts Comparative analysis Conserved sequence Evolutionary conservation Gene duplication Genes Genomes Life Sciences Microbiology Nucleotides Original Article Phylogeny Plant Sciences Resource conservation rRNA Species tRNA Zoology |
title | Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20and%20long%20reads%20chloroplast%20genome%20assemblies%20and%20phylogenomics%20of%20Artemisia%20tangutica%20(Asteraceae)&rft.jtitle=Biolo%CC%81gia&rft.au=Yu,%20Jingya&rft.date=2022-04-01&rft.volume=77&rft.issue=4&rft.spage=915&rft.epage=930&rft.pages=915-930&rft.issn=0006-3088&rft.eissn=1336-9563&rft_id=info:doi/10.1007/s11756-021-00951-2&rft_dat=%3Cproquest_cross%3E2641881213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641881213&rft_id=info:pmid/&rfr_iscdi=true |