Cosmological sudden singularities in \(f(R,T)\) gravity

In this work, we study the possibility of finite-time future cosmological singularities appearing in \(f(R,T)\) gravity, where \(R\) is the Ricci scalar and \(T\) is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar-tensor repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Gonçalves, Tiago B, Rosa, João Luís, Lobo, Francisco S N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gonçalves, Tiago B
Rosa, João Luís
Lobo, Francisco S N
description In this work, we study the possibility of finite-time future cosmological singularities appearing in \(f(R,T)\) gravity, where \(R\) is the Ricci scalar and \(T\) is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar-tensor representation and obtain the respective equations of motion. In a background Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) universe with an arbitrary curvature and for a generic \(C^\infty\) function \(f(R,T)\), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor \(a(t)\), which are compensated by divergences in either the first time-derivatives of the energy density \(\rho(t)\) or the isotropic pressure \(p(t)\). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function \(f(R,T)\) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.
doi_str_mv 10.48550/arxiv.2203.11124
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2641683456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641683456</sourcerecordid><originalsourceid>FETCH-proquest_journals_26416834563</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBEn5AboNuiikbf9t6j2KzuFRkJEvTGyrzUl9-zr0ATo9h9-D0JaSlBdCkIO0LzWnAISllFLgCxQAYzQpOMAKhc4NhBDIchCCBSg_Gnc3o-nVTY7Y-aZpNXZK936UVk2qdVhpXEVddN2XcRXj3spZTe8NWnZydG346xrtzqfyeEke1jx966Z6MN7qL9WQcZoVjIuM_Xd9AGMvOyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641683456</pqid></control><display><type>article</type><title>Cosmological sudden singularities in \(f(R,T)\) gravity</title><source>Free E- Journals</source><creator>Gonçalves, Tiago B ; Rosa, João Luís ; Lobo, Francisco S N</creator><creatorcontrib>Gonçalves, Tiago B ; Rosa, João Luís ; Lobo, Francisco S N</creatorcontrib><description>In this work, we study the possibility of finite-time future cosmological singularities appearing in \(f(R,T)\) gravity, where \(R\) is the Ricci scalar and \(T\) is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar-tensor representation and obtain the respective equations of motion. In a background Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) universe with an arbitrary curvature and for a generic \(C^\infty\) function \(f(R,T)\), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor \(a(t)\), which are compensated by divergences in either the first time-derivatives of the energy density \(\rho(t)\) or the isotropic pressure \(p(t)\). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function \(f(R,T)\) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2203.11124</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomical models ; Constraint modelling ; Cosmology ; Deceleration ; Divergence ; Equations of motion ; Flux density ; Hubble constant ; Parameters ; Singularities ; Tensors ; Universe</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781,27906</link.rule.ids></links><search><creatorcontrib>Gonçalves, Tiago B</creatorcontrib><creatorcontrib>Rosa, João Luís</creatorcontrib><creatorcontrib>Lobo, Francisco S N</creatorcontrib><title>Cosmological sudden singularities in \(f(R,T)\) gravity</title><title>arXiv.org</title><description>In this work, we study the possibility of finite-time future cosmological singularities appearing in \(f(R,T)\) gravity, where \(R\) is the Ricci scalar and \(T\) is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar-tensor representation and obtain the respective equations of motion. In a background Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) universe with an arbitrary curvature and for a generic \(C^\infty\) function \(f(R,T)\), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor \(a(t)\), which are compensated by divergences in either the first time-derivatives of the energy density \(\rho(t)\) or the isotropic pressure \(p(t)\). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function \(f(R,T)\) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.</description><subject>Astronomical models</subject><subject>Constraint modelling</subject><subject>Cosmology</subject><subject>Deceleration</subject><subject>Divergence</subject><subject>Equations of motion</subject><subject>Flux density</subject><subject>Hubble constant</subject><subject>Parameters</subject><subject>Singularities</subject><subject>Tensors</subject><subject>Universe</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0LgjAcgPERBEn5AboNuiikbf9t6j2KzuFRkJEvTGyrzUl9-zr0ATo9h9-D0JaSlBdCkIO0LzWnAISllFLgCxQAYzQpOMAKhc4NhBDIchCCBSg_Gnc3o-nVTY7Y-aZpNXZK936UVk2qdVhpXEVddN2XcRXj3spZTe8NWnZydG346xrtzqfyeEke1jx966Z6MN7qL9WQcZoVjIuM_Xd9AGMvOyo</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Gonçalves, Tiago B</creator><creator>Rosa, João Luís</creator><creator>Lobo, Francisco S N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220509</creationdate><title>Cosmological sudden singularities in \(f(R,T)\) gravity</title><author>Gonçalves, Tiago B ; Rosa, João Luís ; Lobo, Francisco S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26416834563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomical models</topic><topic>Constraint modelling</topic><topic>Cosmology</topic><topic>Deceleration</topic><topic>Divergence</topic><topic>Equations of motion</topic><topic>Flux density</topic><topic>Hubble constant</topic><topic>Parameters</topic><topic>Singularities</topic><topic>Tensors</topic><topic>Universe</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Tiago B</creatorcontrib><creatorcontrib>Rosa, João Luís</creatorcontrib><creatorcontrib>Lobo, Francisco S N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Tiago B</au><au>Rosa, João Luís</au><au>Lobo, Francisco S N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cosmological sudden singularities in \(f(R,T)\) gravity</atitle><jtitle>arXiv.org</jtitle><date>2022-05-09</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this work, we study the possibility of finite-time future cosmological singularities appearing in \(f(R,T)\) gravity, where \(R\) is the Ricci scalar and \(T\) is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar-tensor representation and obtain the respective equations of motion. In a background Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) universe with an arbitrary curvature and for a generic \(C^\infty\) function \(f(R,T)\), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor \(a(t)\), which are compensated by divergences in either the first time-derivatives of the energy density \(\rho(t)\) or the isotropic pressure \(p(t)\). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function \(f(R,T)\) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2203.11124</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2641683456
source Free E- Journals
subjects Astronomical models
Constraint modelling
Cosmology
Deceleration
Divergence
Equations of motion
Flux density
Hubble constant
Parameters
Singularities
Tensors
Universe
title Cosmological sudden singularities in \(f(R,T)\) gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cosmological%20sudden%20singularities%20in%20%5C(f(R,T)%5C)%20gravity&rft.jtitle=arXiv.org&rft.au=Gon%C3%A7alves,%20Tiago%20B&rft.date=2022-05-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2203.11124&rft_dat=%3Cproquest%3E2641683456%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641683456&rft_id=info:pmid/&rfr_iscdi=true