FUTR3D: A Unified Sensor Fusion Framework for 3D Detection

Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Existing multi-modal 3D detection models usually involve customized designs depending on the sensor combinations or setups. In this work, we propose the first unified end-to-end sensor fusion fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Chen, Xuanyao, Zhang, Tianyuan, Wang, Yue, Wang, Yilun, Zhao, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Xuanyao
Zhang, Tianyuan
Wang, Yue
Wang, Yilun
Zhao, Hang
description Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Existing multi-modal 3D detection models usually involve customized designs depending on the sensor combinations or setups. In this work, we propose the first unified end-to-end sensor fusion framework for 3D detection, named FUTR3D, which can be used in (almost) any sensor configuration. FUTR3D employs a query-based Modality-Agnostic Feature Sampler (MAFS), together with a transformer decoder with a set-to-set loss for 3D detection, thus avoiding using late fusion heuristics and post-processing tricks. We validate the effectiveness of our framework on various combinations of cameras, low-resolution LiDARs, high-resolution LiDARs, and Radars. On NuScenes dataset, FUTR3D achieves better performance over specifically designed methods across different sensor combinations. Moreover, FUTR3D achieves great flexibility with different sensor configurations and enables low-cost autonomous driving. For example, only using a 4-beam LiDAR with cameras, FUTR3D (58.0 mAP) achieves on par performance with state-of-the-art 3D detection model CenterPoint (56.6 mAP) using a 32-beam LiDAR.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2641678083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641678083</sourcerecordid><originalsourceid>FETCH-proquest_journals_26416780833</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcgsNCTJ2sVJwVAjNy0zLTE1RCE7NK84vUnArLc7Mz1NwK0rMTS3PL8pWSAMKGrsouKSWpCaXAKV4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzE0MzcwsDC2Jg4VQDN1jUJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641678083</pqid></control><display><type>article</type><title>FUTR3D: A Unified Sensor Fusion Framework for 3D Detection</title><source>Free E- Journals</source><creator>Chen, Xuanyao ; Zhang, Tianyuan ; Wang, Yue ; Wang, Yilun ; Zhao, Hang</creator><creatorcontrib>Chen, Xuanyao ; Zhang, Tianyuan ; Wang, Yue ; Wang, Yilun ; Zhao, Hang</creatorcontrib><description>Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Existing multi-modal 3D detection models usually involve customized designs depending on the sensor combinations or setups. In this work, we propose the first unified end-to-end sensor fusion framework for 3D detection, named FUTR3D, which can be used in (almost) any sensor configuration. FUTR3D employs a query-based Modality-Agnostic Feature Sampler (MAFS), together with a transformer decoder with a set-to-set loss for 3D detection, thus avoiding using late fusion heuristics and post-processing tricks. We validate the effectiveness of our framework on various combinations of cameras, low-resolution LiDARs, high-resolution LiDARs, and Radars. On NuScenes dataset, FUTR3D achieves better performance over specifically designed methods across different sensor combinations. Moreover, FUTR3D achieves great flexibility with different sensor configurations and enables low-cost autonomous driving. For example, only using a 4-beam LiDAR with cameras, FUTR3D (58.0 mAP) achieves on par performance with state-of-the-art 3D detection model CenterPoint (56.6 mAP) using a 32-beam LiDAR.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Configurations ; Lidar ; Robotics ; Sensors ; Three dimensional models</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chen, Xuanyao</creatorcontrib><creatorcontrib>Zhang, Tianyuan</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Wang, Yilun</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><title>FUTR3D: A Unified Sensor Fusion Framework for 3D Detection</title><title>arXiv.org</title><description>Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Existing multi-modal 3D detection models usually involve customized designs depending on the sensor combinations or setups. In this work, we propose the first unified end-to-end sensor fusion framework for 3D detection, named FUTR3D, which can be used in (almost) any sensor configuration. FUTR3D employs a query-based Modality-Agnostic Feature Sampler (MAFS), together with a transformer decoder with a set-to-set loss for 3D detection, thus avoiding using late fusion heuristics and post-processing tricks. We validate the effectiveness of our framework on various combinations of cameras, low-resolution LiDARs, high-resolution LiDARs, and Radars. On NuScenes dataset, FUTR3D achieves better performance over specifically designed methods across different sensor combinations. Moreover, FUTR3D achieves great flexibility with different sensor configurations and enables low-cost autonomous driving. For example, only using a 4-beam LiDAR with cameras, FUTR3D (58.0 mAP) achieves on par performance with state-of-the-art 3D detection model CenterPoint (56.6 mAP) using a 32-beam LiDAR.</description><subject>Cameras</subject><subject>Configurations</subject><subject>Lidar</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcgsNCTJ2sVJwVAjNy0zLTE1RCE7NK84vUnArLc7Mz1NwK0rMTS3PL8pWSAMKGrsouKSWpCaXAKV4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzE0MzcwsDC2Jg4VQDN1jUJ</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Chen, Xuanyao</creator><creator>Zhang, Tianyuan</creator><creator>Wang, Yue</creator><creator>Wang, Yilun</creator><creator>Zhao, Hang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230415</creationdate><title>FUTR3D: A Unified Sensor Fusion Framework for 3D Detection</title><author>Chen, Xuanyao ; Zhang, Tianyuan ; Wang, Yue ; Wang, Yilun ; Zhao, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26416780833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Configurations</topic><topic>Lidar</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuanyao</creatorcontrib><creatorcontrib>Zhang, Tianyuan</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Wang, Yilun</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuanyao</au><au>Zhang, Tianyuan</au><au>Wang, Yue</au><au>Wang, Yilun</au><au>Zhao, Hang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>FUTR3D: A Unified Sensor Fusion Framework for 3D Detection</atitle><jtitle>arXiv.org</jtitle><date>2023-04-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Existing multi-modal 3D detection models usually involve customized designs depending on the sensor combinations or setups. In this work, we propose the first unified end-to-end sensor fusion framework for 3D detection, named FUTR3D, which can be used in (almost) any sensor configuration. FUTR3D employs a query-based Modality-Agnostic Feature Sampler (MAFS), together with a transformer decoder with a set-to-set loss for 3D detection, thus avoiding using late fusion heuristics and post-processing tricks. We validate the effectiveness of our framework on various combinations of cameras, low-resolution LiDARs, high-resolution LiDARs, and Radars. On NuScenes dataset, FUTR3D achieves better performance over specifically designed methods across different sensor combinations. Moreover, FUTR3D achieves great flexibility with different sensor configurations and enables low-cost autonomous driving. For example, only using a 4-beam LiDAR with cameras, FUTR3D (58.0 mAP) achieves on par performance with state-of-the-art 3D detection model CenterPoint (56.6 mAP) using a 32-beam LiDAR.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2641678083
source Free E- Journals
subjects Cameras
Configurations
Lidar
Robotics
Sensors
Three dimensional models
title FUTR3D: A Unified Sensor Fusion Framework for 3D Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=FUTR3D:%20A%20Unified%20Sensor%20Fusion%20Framework%20for%203D%20Detection&rft.jtitle=arXiv.org&rft.au=Chen,%20Xuanyao&rft.date=2023-04-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2641678083%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641678083&rft_id=info:pmid/&rfr_iscdi=true