A finite element method for simulating soft active non-shearable rods immersed in generalized Newtonian fluids

We propose a finite element method for simulating one-dimensional solid models with finite thickness and finite length that move and experience large deformations while immersed in generalized Newtonian fluids. The method is oriented towards applications involving microscopic devices or organisms in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2022-05, Vol.108, p.106213, Article 106213
Hauptverfasser: Ausas, Roberto Federico, Gebhardt, Cristian Guillermo, Buscaglia, Gustavo Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106213
container_title Communications in nonlinear science & numerical simulation
container_volume 108
creator Ausas, Roberto Federico
Gebhardt, Cristian Guillermo
Buscaglia, Gustavo Carlos
description We propose a finite element method for simulating one-dimensional solid models with finite thickness and finite length that move and experience large deformations while immersed in generalized Newtonian fluids. The method is oriented towards applications involving microscopic devices or organisms in the soft-bio-matter realm. By considering that the strain energy of the solid may explicitly depend on time, we incorporate a mechanism for active response. The solids are modeled as Cosserat rods, a detailed formulation being provided for the planar non-shearable case. The discretization adopts one-dimensional Hermite elements for the rod and two-dimensional low-order Lagrange elements for the fluid’s velocity and pressure. The fluid mesh is boundary-fitted, with remeshing at each time step. Several time marching schemes are studied, of which a semi-implicit scheme emerges as most effective. The method is demonstrated in very challenging examples: the roll-up of a rod to circular shape and later sudden release, the interaction of a soft rod with a fluid jet and the active self-locomotion of a sperm-like rod. The article includes a detailed description of a code that implements the method in the Firedrake library. •One-dimensional solid swimming in generalized Newtonian fluid at low Reynolds number.•Finite element fluid structure interaction method for soft active non-shearable rods.•Solids modeled as Cosserat rods immersed in viscous fluid.•The code, which is implemented in the Firedrake platform, is made freely available.
doi_str_mv 10.1016/j.cnsns.2021.106213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641589823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570421004809</els_id><sourcerecordid>2641589823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a985bf68503e66a9838713ea0d1e46b923c5087e351452e58e1b77697e2e21ea3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwBWwssU7xI35kwaKqeEkVbGBtucmkdZXYxXaK4OtxKWtWM3d074zmFMU1wTOCibjdzhoXXZxRTEmeCErYSTEhSqpSUlmd5h5jWXKJq_PiIsYtzqmaV5PCzVFnnU2AoIcBXEIDpI1vUecDinYYe5OsW6Pou4RMk-wekPOujBswwax6QMG3EdlhgBChRdahNTgIprffWb7AZ_LOGoe6frRtvCzOOtNHuPqr0-L94f5t8VQuXx-fF_Nl2TApUmlqxVedUBwzECIrpiRhYHBLoBKrmrKGYyWBcVJxClwBWUkpagkUKAHDpsXNce8u-I8RYtJbPwaXT2oqKsJVrSjLLnZ0NcHHGKDTu2AHE740wfoAVm_1L1h9AKuPYHPq7piC_MDeQtCxseAaaG2AJunW23_zP3wJgv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641589823</pqid></control><display><type>article</type><title>A finite element method for simulating soft active non-shearable rods immersed in generalized Newtonian fluids</title><source>Elsevier ScienceDirect Journals</source><creator>Ausas, Roberto Federico ; Gebhardt, Cristian Guillermo ; Buscaglia, Gustavo Carlos</creator><creatorcontrib>Ausas, Roberto Federico ; Gebhardt, Cristian Guillermo ; Buscaglia, Gustavo Carlos</creatorcontrib><description>We propose a finite element method for simulating one-dimensional solid models with finite thickness and finite length that move and experience large deformations while immersed in generalized Newtonian fluids. The method is oriented towards applications involving microscopic devices or organisms in the soft-bio-matter realm. By considering that the strain energy of the solid may explicitly depend on time, we incorporate a mechanism for active response. The solids are modeled as Cosserat rods, a detailed formulation being provided for the planar non-shearable case. The discretization adopts one-dimensional Hermite elements for the rod and two-dimensional low-order Lagrange elements for the fluid’s velocity and pressure. The fluid mesh is boundary-fitted, with remeshing at each time step. Several time marching schemes are studied, of which a semi-implicit scheme emerges as most effective. The method is demonstrated in very challenging examples: the roll-up of a rod to circular shape and later sudden release, the interaction of a soft rod with a fluid jet and the active self-locomotion of a sperm-like rod. The article includes a detailed description of a code that implements the method in the Firedrake library. •One-dimensional solid swimming in generalized Newtonian fluid at low Reynolds number.•Finite element fluid structure interaction method for soft active non-shearable rods.•Solids modeled as Cosserat rods immersed in viscous fluid.•The code, which is implemented in the Firedrake platform, is made freely available.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2021.106213</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Finite element analysis ; Finite element method ; Fluid dynamics ; Fluid jets ; Fluid–structure interaction ; Freely available Firedrake implementation ; Generalized Newtonian fluids ; Locomotion ; Newtonian fluids ; Non-Newtonian fluids ; One-dimensional solids with finite thickness and finite length ; Rods ; Soft active bio-matter realm ; Strain rate ; Time marching ; Velocity</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2022-05, Vol.108, p.106213, Article 106213</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a985bf68503e66a9838713ea0d1e46b923c5087e351452e58e1b77697e2e21ea3</citedby><cites>FETCH-LOGICAL-c376t-a985bf68503e66a9838713ea0d1e46b923c5087e351452e58e1b77697e2e21ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570421004809$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ausas, Roberto Federico</creatorcontrib><creatorcontrib>Gebhardt, Cristian Guillermo</creatorcontrib><creatorcontrib>Buscaglia, Gustavo Carlos</creatorcontrib><title>A finite element method for simulating soft active non-shearable rods immersed in generalized Newtonian fluids</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>We propose a finite element method for simulating one-dimensional solid models with finite thickness and finite length that move and experience large deformations while immersed in generalized Newtonian fluids. The method is oriented towards applications involving microscopic devices or organisms in the soft-bio-matter realm. By considering that the strain energy of the solid may explicitly depend on time, we incorporate a mechanism for active response. The solids are modeled as Cosserat rods, a detailed formulation being provided for the planar non-shearable case. The discretization adopts one-dimensional Hermite elements for the rod and two-dimensional low-order Lagrange elements for the fluid’s velocity and pressure. The fluid mesh is boundary-fitted, with remeshing at each time step. Several time marching schemes are studied, of which a semi-implicit scheme emerges as most effective. The method is demonstrated in very challenging examples: the roll-up of a rod to circular shape and later sudden release, the interaction of a soft rod with a fluid jet and the active self-locomotion of a sperm-like rod. The article includes a detailed description of a code that implements the method in the Firedrake library. •One-dimensional solid swimming in generalized Newtonian fluid at low Reynolds number.•Finite element fluid structure interaction method for soft active non-shearable rods.•Solids modeled as Cosserat rods immersed in viscous fluid.•The code, which is implemented in the Firedrake platform, is made freely available.</description><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid jets</subject><subject>Fluid–structure interaction</subject><subject>Freely available Firedrake implementation</subject><subject>Generalized Newtonian fluids</subject><subject>Locomotion</subject><subject>Newtonian fluids</subject><subject>Non-Newtonian fluids</subject><subject>One-dimensional solids with finite thickness and finite length</subject><subject>Rods</subject><subject>Soft active bio-matter realm</subject><subject>Strain rate</subject><subject>Time marching</subject><subject>Velocity</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwBWwssU7xI35kwaKqeEkVbGBtucmkdZXYxXaK4OtxKWtWM3d074zmFMU1wTOCibjdzhoXXZxRTEmeCErYSTEhSqpSUlmd5h5jWXKJq_PiIsYtzqmaV5PCzVFnnU2AoIcBXEIDpI1vUecDinYYe5OsW6Pou4RMk-wekPOujBswwax6QMG3EdlhgBChRdahNTgIprffWb7AZ_LOGoe6frRtvCzOOtNHuPqr0-L94f5t8VQuXx-fF_Nl2TApUmlqxVedUBwzECIrpiRhYHBLoBKrmrKGYyWBcVJxClwBWUkpagkUKAHDpsXNce8u-I8RYtJbPwaXT2oqKsJVrSjLLnZ0NcHHGKDTu2AHE740wfoAVm_1L1h9AKuPYHPq7piC_MDeQtCxseAaaG2AJunW23_zP3wJgv8</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Ausas, Roberto Federico</creator><creator>Gebhardt, Cristian Guillermo</creator><creator>Buscaglia, Gustavo Carlos</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202205</creationdate><title>A finite element method for simulating soft active non-shearable rods immersed in generalized Newtonian fluids</title><author>Ausas, Roberto Federico ; Gebhardt, Cristian Guillermo ; Buscaglia, Gustavo Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a985bf68503e66a9838713ea0d1e46b923c5087e351452e58e1b77697e2e21ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid jets</topic><topic>Fluid–structure interaction</topic><topic>Freely available Firedrake implementation</topic><topic>Generalized Newtonian fluids</topic><topic>Locomotion</topic><topic>Newtonian fluids</topic><topic>Non-Newtonian fluids</topic><topic>One-dimensional solids with finite thickness and finite length</topic><topic>Rods</topic><topic>Soft active bio-matter realm</topic><topic>Strain rate</topic><topic>Time marching</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ausas, Roberto Federico</creatorcontrib><creatorcontrib>Gebhardt, Cristian Guillermo</creatorcontrib><creatorcontrib>Buscaglia, Gustavo Carlos</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ausas, Roberto Federico</au><au>Gebhardt, Cristian Guillermo</au><au>Buscaglia, Gustavo Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element method for simulating soft active non-shearable rods immersed in generalized Newtonian fluids</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2022-05</date><risdate>2022</risdate><volume>108</volume><spage>106213</spage><pages>106213-</pages><artnum>106213</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>We propose a finite element method for simulating one-dimensional solid models with finite thickness and finite length that move and experience large deformations while immersed in generalized Newtonian fluids. The method is oriented towards applications involving microscopic devices or organisms in the soft-bio-matter realm. By considering that the strain energy of the solid may explicitly depend on time, we incorporate a mechanism for active response. The solids are modeled as Cosserat rods, a detailed formulation being provided for the planar non-shearable case. The discretization adopts one-dimensional Hermite elements for the rod and two-dimensional low-order Lagrange elements for the fluid’s velocity and pressure. The fluid mesh is boundary-fitted, with remeshing at each time step. Several time marching schemes are studied, of which a semi-implicit scheme emerges as most effective. The method is demonstrated in very challenging examples: the roll-up of a rod to circular shape and later sudden release, the interaction of a soft rod with a fluid jet and the active self-locomotion of a sperm-like rod. The article includes a detailed description of a code that implements the method in the Firedrake library. •One-dimensional solid swimming in generalized Newtonian fluid at low Reynolds number.•Finite element fluid structure interaction method for soft active non-shearable rods.•Solids modeled as Cosserat rods immersed in viscous fluid.•The code, which is implemented in the Firedrake platform, is made freely available.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2021.106213</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2022-05, Vol.108, p.106213, Article 106213
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2641589823
source Elsevier ScienceDirect Journals
subjects Finite element analysis
Finite element method
Fluid dynamics
Fluid jets
Fluid–structure interaction
Freely available Firedrake implementation
Generalized Newtonian fluids
Locomotion
Newtonian fluids
Non-Newtonian fluids
One-dimensional solids with finite thickness and finite length
Rods
Soft active bio-matter realm
Strain rate
Time marching
Velocity
title A finite element method for simulating soft active non-shearable rods immersed in generalized Newtonian fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20method%20for%20simulating%20soft%20active%20non-shearable%20rods%20immersed%20in%20generalized%20Newtonian%20fluids&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Ausas,%20Roberto%20Federico&rft.date=2022-05&rft.volume=108&rft.spage=106213&rft.pages=106213-&rft.artnum=106213&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2021.106213&rft_dat=%3Cproquest_cross%3E2641589823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641589823&rft_id=info:pmid/&rft_els_id=S1007570421004809&rfr_iscdi=true