Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations
In this paper, we implemented extended e x p - φ ξ -expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2022-04, Vol.54 (4), Article 246 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 54 |
creator | Inan, Ibrahim Enam Inc, Mustafa Rezazadeh, Hadi Akinyemi, Lanre |
description | In this paper, we implemented extended
e
x
p
-
φ
ξ
-expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions. |
doi_str_mv | 10.1007/s11082-022-03613-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641555863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641555863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRWEAocHyJ44yo4iYhdQAEm-XaDqRK7dROhm6svCZPgkuQ2BiOzvL9v875EDrGcIEBysuIMQiSA0lDOab5ZgdNcFGSXODydRdNgALPRYWrfXQQ4xIAOCtggl7mXd9o1WbRt03vXcx8nZ3Sr4_P8zT4LDPNyrrYeJcY5Uym_dC11mTOu7ZxVoXsUb8Hbxr3ZkNm14PqExwP0V6t2miPfvcUPd9cP83u8of57f3s6iHXhFV9LowBYXWNGTFKaUKFWNQFV0oRTQyzmgGvhK01Z5ouMBiqOKeF0lDWrAROp-hk7O2CXw829nLph5COjZJwhouiEJwmioyUDj7GYGvZhWalwkZikFuBchQok0D5I1BuUoiOoZjg7Xd_1f-kvgFEdnY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641555863</pqid></control><display><type>article</type><title>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Inan, Ibrahim Enam ; Inc, Mustafa ; Rezazadeh, Hadi ; Akinyemi, Lanre</creator><creatorcontrib>Inan, Ibrahim Enam ; Inc, Mustafa ; Rezazadeh, Hadi ; Akinyemi, Lanre</creatorcontrib><description>In this paper, we implemented extended
e
x
p
-
φ
ξ
-expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-022-03613-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Exact solutions ; Lasers ; Nonlinear differential equations ; Nonlinear equations ; Optical Devices ; Optics ; Partial differential equations ; Photonics ; Physics ; Physics and Astronomy ; Schrodinger equation ; Solitary waves ; Traveling waves</subject><ispartof>Optical and quantum electronics, 2022-04, Vol.54 (4), Article 246</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</citedby><cites>FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</cites><orcidid>0000-0003-4996-8373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-022-03613-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-022-03613-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Inan, Ibrahim Enam</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><creatorcontrib>Rezazadeh, Hadi</creatorcontrib><creatorcontrib>Akinyemi, Lanre</creatorcontrib><title>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper, we implemented extended
e
x
p
-
φ
ξ
-expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Exact solutions</subject><subject>Lasers</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Partial differential equations</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyRWEAocHyJ44yo4iYhdQAEm-XaDqRK7dROhm6svCZPgkuQ2BiOzvL9v875EDrGcIEBysuIMQiSA0lDOab5ZgdNcFGSXODydRdNgALPRYWrfXQQ4xIAOCtggl7mXd9o1WbRt03vXcx8nZ3Sr4_P8zT4LDPNyrrYeJcY5Uym_dC11mTOu7ZxVoXsUb8Hbxr3ZkNm14PqExwP0V6t2miPfvcUPd9cP83u8of57f3s6iHXhFV9LowBYXWNGTFKaUKFWNQFV0oRTQyzmgGvhK01Z5ouMBiqOKeF0lDWrAROp-hk7O2CXw829nLph5COjZJwhouiEJwmioyUDj7GYGvZhWalwkZikFuBchQok0D5I1BuUoiOoZjg7Xd_1f-kvgFEdnY2</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Inan, Ibrahim Enam</creator><creator>Inc, Mustafa</creator><creator>Rezazadeh, Hadi</creator><creator>Akinyemi, Lanre</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4996-8373</orcidid></search><sort><creationdate>20220401</creationdate><title>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</title><author>Inan, Ibrahim Enam ; Inc, Mustafa ; Rezazadeh, Hadi ; Akinyemi, Lanre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Exact solutions</topic><topic>Lasers</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Partial differential equations</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inan, Ibrahim Enam</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><creatorcontrib>Rezazadeh, Hadi</creatorcontrib><creatorcontrib>Akinyemi, Lanre</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inan, Ibrahim Enam</au><au>Inc, Mustafa</au><au>Rezazadeh, Hadi</au><au>Akinyemi, Lanre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>54</volume><issue>4</issue><artnum>246</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper, we implemented extended
e
x
p
-
φ
ξ
-expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-022-03613-y</doi><orcidid>https://orcid.org/0000-0003-4996-8373</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2022-04, Vol.54 (4), Article 246 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_2641555863 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Exact solutions Lasers Nonlinear differential equations Nonlinear equations Optical Devices Optics Partial differential equations Photonics Physics Physics and Astronomy Schrodinger equation Solitary waves Traveling waves |
title | Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20solitons%20of%20(3%E2%80%89+%E2%80%891)%20dimensional%20and%20coupled%20nonlinear%20Schrodinger%20equations&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Inan,%20Ibrahim%20Enam&rft.date=2022-04-01&rft.volume=54&rft.issue=4&rft.artnum=246&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-022-03613-y&rft_dat=%3Cproquest_cross%3E2641555863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641555863&rft_id=info:pmid/&rfr_iscdi=true |