Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations

In this paper, we implemented extended e x p - φ ξ -expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2022-04, Vol.54 (4), Article 246
Hauptverfasser: Inan, Ibrahim Enam, Inc, Mustafa, Rezazadeh, Hadi, Akinyemi, Lanre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Optical and quantum electronics
container_volume 54
creator Inan, Ibrahim Enam
Inc, Mustafa
Rezazadeh, Hadi
Akinyemi, Lanre
description In this paper, we implemented extended e x p - φ ξ -expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions.
doi_str_mv 10.1007/s11082-022-03613-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641555863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641555863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRWEAocHyJ44yo4iYhdQAEm-XaDqRK7dROhm6svCZPgkuQ2BiOzvL9v875EDrGcIEBysuIMQiSA0lDOab5ZgdNcFGSXODydRdNgALPRYWrfXQQ4xIAOCtggl7mXd9o1WbRt03vXcx8nZ3Sr4_P8zT4LDPNyrrYeJcY5Uym_dC11mTOu7ZxVoXsUb8Hbxr3ZkNm14PqExwP0V6t2miPfvcUPd9cP83u8of57f3s6iHXhFV9LowBYXWNGTFKaUKFWNQFV0oRTQyzmgGvhK01Z5ouMBiqOKeF0lDWrAROp-hk7O2CXw829nLph5COjZJwhouiEJwmioyUDj7GYGvZhWalwkZikFuBchQok0D5I1BuUoiOoZjg7Xd_1f-kvgFEdnY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641555863</pqid></control><display><type>article</type><title>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Inan, Ibrahim Enam ; Inc, Mustafa ; Rezazadeh, Hadi ; Akinyemi, Lanre</creator><creatorcontrib>Inan, Ibrahim Enam ; Inc, Mustafa ; Rezazadeh, Hadi ; Akinyemi, Lanre</creatorcontrib><description>In this paper, we implemented extended e x p - φ ξ -expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-022-03613-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Exact solutions ; Lasers ; Nonlinear differential equations ; Nonlinear equations ; Optical Devices ; Optics ; Partial differential equations ; Photonics ; Physics ; Physics and Astronomy ; Schrodinger equation ; Solitary waves ; Traveling waves</subject><ispartof>Optical and quantum electronics, 2022-04, Vol.54 (4), Article 246</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</citedby><cites>FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</cites><orcidid>0000-0003-4996-8373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-022-03613-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-022-03613-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Inan, Ibrahim Enam</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><creatorcontrib>Rezazadeh, Hadi</creatorcontrib><creatorcontrib>Akinyemi, Lanre</creatorcontrib><title>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper, we implemented extended e x p - φ ξ -expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Exact solutions</subject><subject>Lasers</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Partial differential equations</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyRWEAocHyJ44yo4iYhdQAEm-XaDqRK7dROhm6svCZPgkuQ2BiOzvL9v875EDrGcIEBysuIMQiSA0lDOab5ZgdNcFGSXODydRdNgALPRYWrfXQQ4xIAOCtggl7mXd9o1WbRt03vXcx8nZ3Sr4_P8zT4LDPNyrrYeJcY5Uym_dC11mTOu7ZxVoXsUb8Hbxr3ZkNm14PqExwP0V6t2miPfvcUPd9cP83u8of57f3s6iHXhFV9LowBYXWNGTFKaUKFWNQFV0oRTQyzmgGvhK01Z5ouMBiqOKeF0lDWrAROp-hk7O2CXw829nLph5COjZJwhouiEJwmioyUDj7GYGvZhWalwkZikFuBchQok0D5I1BuUoiOoZjg7Xd_1f-kvgFEdnY2</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Inan, Ibrahim Enam</creator><creator>Inc, Mustafa</creator><creator>Rezazadeh, Hadi</creator><creator>Akinyemi, Lanre</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4996-8373</orcidid></search><sort><creationdate>20220401</creationdate><title>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</title><author>Inan, Ibrahim Enam ; Inc, Mustafa ; Rezazadeh, Hadi ; Akinyemi, Lanre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-8dd08ecf142daac2388bf56aaa2c2d4ec40698efc64c3b10d3a6635ac07f47063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Exact solutions</topic><topic>Lasers</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Partial differential equations</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inan, Ibrahim Enam</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><creatorcontrib>Rezazadeh, Hadi</creatorcontrib><creatorcontrib>Akinyemi, Lanre</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inan, Ibrahim Enam</au><au>Inc, Mustafa</au><au>Rezazadeh, Hadi</au><au>Akinyemi, Lanre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>54</volume><issue>4</issue><artnum>246</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper, we implemented extended e x p - φ ξ -expansion method for some exact solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled nonlinear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and exponential solutions. We observed that these solutions provided the equations through Mathematica 11.2. Apart from that, we have shown the graphics performance of some of the solutions found. This method has been used recently to obtain exact traveling wave solutions of nonlinear partial differential equations. The results achieved in this study have been confirmed with computational software Maple or Mathematica by placing them back into NLFPDEs and found them correct. We posited that the approach is updated to be more pragmatic, efficacious, and credible and that we pursue more generalized precise solutions for traveling waves, like the solitary wave solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-022-03613-y</doi><orcidid>https://orcid.org/0000-0003-4996-8373</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2022-04, Vol.54 (4), Article 246
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2641555863
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Exact solutions
Lasers
Nonlinear differential equations
Nonlinear equations
Optical Devices
Optics
Partial differential equations
Photonics
Physics
Physics and Astronomy
Schrodinger equation
Solitary waves
Traveling waves
title Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20solitons%20of%20(3%E2%80%89+%E2%80%891)%20dimensional%20and%20coupled%20nonlinear%20Schrodinger%20equations&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Inan,%20Ibrahim%20Enam&rft.date=2022-04-01&rft.volume=54&rft.issue=4&rft.artnum=246&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-022-03613-y&rft_dat=%3Cproquest_cross%3E2641555863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641555863&rft_id=info:pmid/&rfr_iscdi=true