Intelligent train control for cooperative train formation: A deep reinforcement learning approach

Considering the intelligent train control problem in long-term evolution for metro system, a new train-to-train communication-based train control system is proposed, where the cooperative train formation technology is introduced for realizing a more flexible train operation mode. To break the limita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2022-05, Vol.236 (5), p.975-988
Hauptverfasser: Zhang, Danyang, Zhao, Junhui, Zhang, Yang, Zhang, Qingmiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 988
container_issue 5
container_start_page 975
container_title Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering
container_volume 236
creator Zhang, Danyang
Zhao, Junhui
Zhang, Yang
Zhang, Qingmiao
description Considering the intelligent train control problem in long-term evolution for metro system, a new train-to-train communication-based train control system is proposed, where the cooperative train formation technology is introduced for realizing a more flexible train operation mode. To break the limitation of centralized train control, a pre-exploration-based two-stage deep Q-learning algorithm is adopted in the cooperative train formation, which is one of the first intelligent approaches for urban railway formation control. In addition, a comfort-considered algorithm is given, where optimization measures are taken for providing superior passenger experience. The simulation results illustrate that the optimized algorithm has a smoother jerk curve during the train control process, and the passenger comfort can be improved. Furthermore, the proposed algorithm can effectively accomplish the train control task in the multi-train tracking scenarios, and meet the control requirements of the cooperative formation system.
doi_str_mv 10.1177/09596518211064799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641365746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09596518211064799</sage_id><sourcerecordid>2641365746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f79524d22ad88e78d9a2a94407709dc763063220383f975b9391743a603a07563</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq3ltsvFWio9CwYuel3F3tm7ZJmuSCv57s7TgQZzDPL8HDCHXnN1ybswds6XVJa8E50wrY-0JmQmmeCFzOiWz6V5MgHNyEeOW5aismRFYuYTD0G_QJZoC9I423qXgB9r5kHs_YoDUf-Hxmre7PHt3Txe0RRxpwN7lbYO7SWNACK53GwrjGDw0H5fkrIMh4tWxzsnb48Pr8rlYvzytlot10UguUtEZWwrVCgFtVaGpWgsCrFLMGGbbxmjJtBSCyUp21pTvVlpulATNJDBTajknNwfdbPu5x5jqrd8Hly1roRWXujRqQvEDqgk-xoBdPYZ-B-G75qyePln_-WTm3B44ETb4q_o_4QeHt3J4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641365746</pqid></control><display><type>article</type><title>Intelligent train control for cooperative train formation: A deep reinforcement learning approach</title><source>SAGE Complete A-Z List</source><creator>Zhang, Danyang ; Zhao, Junhui ; Zhang, Yang ; Zhang, Qingmiao</creator><creatorcontrib>Zhang, Danyang ; Zhao, Junhui ; Zhang, Yang ; Zhang, Qingmiao</creatorcontrib><description>Considering the intelligent train control problem in long-term evolution for metro system, a new train-to-train communication-based train control system is proposed, where the cooperative train formation technology is introduced for realizing a more flexible train operation mode. To break the limitation of centralized train control, a pre-exploration-based two-stage deep Q-learning algorithm is adopted in the cooperative train formation, which is one of the first intelligent approaches for urban railway formation control. In addition, a comfort-considered algorithm is given, where optimization measures are taken for providing superior passenger experience. The simulation results illustrate that the optimized algorithm has a smoother jerk curve during the train control process, and the passenger comfort can be improved. Furthermore, the proposed algorithm can effectively accomplish the train control task in the multi-train tracking scenarios, and meet the control requirements of the cooperative formation system.</description><identifier>ISSN: 0959-6518</identifier><identifier>EISSN: 2041-3041</identifier><identifier>DOI: 10.1177/09596518211064799</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Communications systems ; Control systems ; Control tasks ; Cooperative control ; Deep learning ; Machine learning ; Mechanical engineering ; Monitoring systems ; Optimization ; Passenger comfort ; Subways</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2022-05, Vol.236 (5), p.975-988</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f79524d22ad88e78d9a2a94407709dc763063220383f975b9391743a603a07563</citedby><cites>FETCH-LOGICAL-c312t-f79524d22ad88e78d9a2a94407709dc763063220383f975b9391743a603a07563</cites><orcidid>0000-0001-5958-6622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09596518211064799$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09596518211064799$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Zhang, Danyang</creatorcontrib><creatorcontrib>Zhao, Junhui</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Zhang, Qingmiao</creatorcontrib><title>Intelligent train control for cooperative train formation: A deep reinforcement learning approach</title><title>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</title><description>Considering the intelligent train control problem in long-term evolution for metro system, a new train-to-train communication-based train control system is proposed, where the cooperative train formation technology is introduced for realizing a more flexible train operation mode. To break the limitation of centralized train control, a pre-exploration-based two-stage deep Q-learning algorithm is adopted in the cooperative train formation, which is one of the first intelligent approaches for urban railway formation control. In addition, a comfort-considered algorithm is given, where optimization measures are taken for providing superior passenger experience. The simulation results illustrate that the optimized algorithm has a smoother jerk curve during the train control process, and the passenger comfort can be improved. Furthermore, the proposed algorithm can effectively accomplish the train control task in the multi-train tracking scenarios, and meet the control requirements of the cooperative formation system.</description><subject>Algorithms</subject><subject>Communications systems</subject><subject>Control systems</subject><subject>Control tasks</subject><subject>Cooperative control</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Mechanical engineering</subject><subject>Monitoring systems</subject><subject>Optimization</subject><subject>Passenger comfort</subject><subject>Subways</subject><issn>0959-6518</issn><issn>2041-3041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq3ltsvFWio9CwYuel3F3tm7ZJmuSCv57s7TgQZzDPL8HDCHXnN1ybswds6XVJa8E50wrY-0JmQmmeCFzOiWz6V5MgHNyEeOW5aismRFYuYTD0G_QJZoC9I423qXgB9r5kHs_YoDUf-Hxmre7PHt3Txe0RRxpwN7lbYO7SWNACK53GwrjGDw0H5fkrIMh4tWxzsnb48Pr8rlYvzytlot10UguUtEZWwrVCgFtVaGpWgsCrFLMGGbbxmjJtBSCyUp21pTvVlpulATNJDBTajknNwfdbPu5x5jqrd8Hly1roRWXujRqQvEDqgk-xoBdPYZ-B-G75qyePln_-WTm3B44ETb4q_o_4QeHt3J4</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Zhang, Danyang</creator><creator>Zhao, Junhui</creator><creator>Zhang, Yang</creator><creator>Zhang, Qingmiao</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5958-6622</orcidid></search><sort><creationdate>202205</creationdate><title>Intelligent train control for cooperative train formation: A deep reinforcement learning approach</title><author>Zhang, Danyang ; Zhao, Junhui ; Zhang, Yang ; Zhang, Qingmiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f79524d22ad88e78d9a2a94407709dc763063220383f975b9391743a603a07563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Communications systems</topic><topic>Control systems</topic><topic>Control tasks</topic><topic>Cooperative control</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Mechanical engineering</topic><topic>Monitoring systems</topic><topic>Optimization</topic><topic>Passenger comfort</topic><topic>Subways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Danyang</creatorcontrib><creatorcontrib>Zhao, Junhui</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Zhang, Qingmiao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Danyang</au><au>Zhao, Junhui</au><au>Zhang, Yang</au><au>Zhang, Qingmiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent train control for cooperative train formation: A deep reinforcement learning approach</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle><date>2022-05</date><risdate>2022</risdate><volume>236</volume><issue>5</issue><spage>975</spage><epage>988</epage><pages>975-988</pages><issn>0959-6518</issn><eissn>2041-3041</eissn><abstract>Considering the intelligent train control problem in long-term evolution for metro system, a new train-to-train communication-based train control system is proposed, where the cooperative train formation technology is introduced for realizing a more flexible train operation mode. To break the limitation of centralized train control, a pre-exploration-based two-stage deep Q-learning algorithm is adopted in the cooperative train formation, which is one of the first intelligent approaches for urban railway formation control. In addition, a comfort-considered algorithm is given, where optimization measures are taken for providing superior passenger experience. The simulation results illustrate that the optimized algorithm has a smoother jerk curve during the train control process, and the passenger comfort can be improved. Furthermore, the proposed algorithm can effectively accomplish the train control task in the multi-train tracking scenarios, and meet the control requirements of the cooperative formation system.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09596518211064799</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5958-6622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-6518
ispartof Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2022-05, Vol.236 (5), p.975-988
issn 0959-6518
2041-3041
language eng
recordid cdi_proquest_journals_2641365746
source SAGE Complete A-Z List
subjects Algorithms
Communications systems
Control systems
Control tasks
Cooperative control
Deep learning
Machine learning
Mechanical engineering
Monitoring systems
Optimization
Passenger comfort
Subways
title Intelligent train control for cooperative train formation: A deep reinforcement learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20train%20control%20for%20cooperative%20train%20formation:%20A%20deep%20reinforcement%20learning%20approach&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20I,%20Journal%20of%20systems%20and%20control%20engineering&rft.au=Zhang,%20Danyang&rft.date=2022-05&rft.volume=236&rft.issue=5&rft.spage=975&rft.epage=988&rft.pages=975-988&rft.issn=0959-6518&rft.eissn=2041-3041&rft_id=info:doi/10.1177/09596518211064799&rft_dat=%3Cproquest_cross%3E2641365746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641365746&rft_id=info:pmid/&rft_sage_id=10.1177_09596518211064799&rfr_iscdi=true