A tunable green power module for portable electronics and IoT sensors: design, fabrication, modeling, characterization, and implementation

•Eco-friendly power module for operating low-power IoT sensors.•Low-frequency specialization, i.e.,1–5 Hz.•Small handheld size of approximately 3.8 × 7.6 × 17.8 cm3.•Normalized power density of approximately 0.537 [mW/cm3 g2].•Generates 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2022-02, Vol.334, p.113318, Article 113318
Hauptverfasser: Nguyen, Hieu Tri, Genov, Dentcho A., Bardaweel, Hamzeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113318
container_title Sensors and actuators. A. Physical.
container_volume 334
creator Nguyen, Hieu Tri
Genov, Dentcho A.
Bardaweel, Hamzeh
description •Eco-friendly power module for operating low-power IoT sensors.•Low-frequency specialization, i.e.,1–5 Hz.•Small handheld size of approximately 3.8 × 7.6 × 17.8 cm3.•Normalized power density of approximately 0.537 [mW/cm3 g2].•Generates 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. [Display omitted] The unprecedented worldwide spread of portable electronics and low-power sensors in the era of Internet of Things (IoT) has amplified the demand for alternative sustainable and eco-friendly power sources. In this article, a novel tunable green power module for operating portable electronics is presented. The unique design of the power module allows for low-frequency specialization, i.e., less than 5 Hz, while maintaining a small handheld size, i.e., 3.8 × 7.6 × 17.8 cm3. A mathematical model is developed, and a prototype of the power module is fabricated. Both experiment and model are used to characterize the dynamic behavior of the power module. Results show good agreement between model simulations and experimental data. For a base-excitation of 0.15 g m/s2, the energy harvesting unit has a normalized power density of approximately 0.537 [mW/cm3. g2]. In this article, the ability of the power module to light a group of LEDs and charge a smartphone from human body motion is demonstrated. In these real-world demonstrations, the power module was able to generate 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. Compared to state-of-the-art, the presented power module displays unique features, including its ability to harvest low-density vibrations that are characterized by low frequencies and accelerations.
doi_str_mv 10.1016/j.sna.2021.113318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641063249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424721007810</els_id><sourcerecordid>2641063249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3e382a8045a2570158eafc5ac0ae4dc309d4156f54462e5cca03a434c93172a13</originalsourceid><addsrcrecordid>eNp9kMtOAzEMRSMEEqXwAewisWVKXvOCFUK8JCQ2sI5MxlNSTZPiTEHwCXw1KWXNyvK177V1GDuWYiaFrM4WsxRgpoSSMym1ls0Om8im1oUWVbvLJqJVpjDK1PvsIKWFEELrup6w70s-rgO8DMjnhBj4Kn4g8WXs1lnqI2WBxt85DuhGisG7xCF0_D4-8YQhRUrnvMPk5-GU9_BC3sHoY25yCg4-zE-5ewUCNyL5r7_ZJsEvVwMuMYy_2iHb62FIePRXp-z55vrp6q54eLy9v7p8KJxW5Vho1I2CRpgSVFkLWTYIvSvBCUDTOS3azsiy6ktjKoWlcyA0GG1cq2WtQOopO9nmrii-rTGNdhHXFPJJqyojRaWVafOW3G45iikR9nZFfgn0aaWwG-R2YTNyu0Fut8iz52Lrwfz-u0eyyXkMDjtPmZ3tov_H_QOVAIq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641063249</pqid></control><display><type>article</type><title>A tunable green power module for portable electronics and IoT sensors: design, fabrication, modeling, characterization, and implementation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nguyen, Hieu Tri ; Genov, Dentcho A. ; Bardaweel, Hamzeh</creator><creatorcontrib>Nguyen, Hieu Tri ; Genov, Dentcho A. ; Bardaweel, Hamzeh</creatorcontrib><description>•Eco-friendly power module for operating low-power IoT sensors.•Low-frequency specialization, i.e.,1–5 Hz.•Small handheld size of approximately 3.8 × 7.6 × 17.8 cm3.•Normalized power density of approximately 0.537 [mW/cm3 g2].•Generates 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. [Display omitted] The unprecedented worldwide spread of portable electronics and low-power sensors in the era of Internet of Things (IoT) has amplified the demand for alternative sustainable and eco-friendly power sources. In this article, a novel tunable green power module for operating portable electronics is presented. The unique design of the power module allows for low-frequency specialization, i.e., less than 5 Hz, while maintaining a small handheld size, i.e., 3.8 × 7.6 × 17.8 cm3. A mathematical model is developed, and a prototype of the power module is fabricated. Both experiment and model are used to characterize the dynamic behavior of the power module. Results show good agreement between model simulations and experimental data. For a base-excitation of 0.15 g m/s2, the energy harvesting unit has a normalized power density of approximately 0.537 [mW/cm3. g2]. In this article, the ability of the power module to light a group of LEDs and charge a smartphone from human body motion is demonstrated. In these real-world demonstrations, the power module was able to generate 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. Compared to state-of-the-art, the presented power module displays unique features, including its ability to harvest low-density vibrations that are characterized by low frequencies and accelerations.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2021.113318</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Clean energy ; Clean energy harvesting ; Electromagnetic energy harvesting ; Electronics ; Energy harvesting ; Green technology ; Human motion ; Internet of Things ; IoT support technology ; Mathematical models ; Modules ; Portability ; Portable power module ; Power sources ; Receivers &amp; amplifiers ; Sensors ; Shaking ; Vibration</subject><ispartof>Sensors and actuators. A. Physical., 2022-02, Vol.334, p.113318, Article 113318</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3e382a8045a2570158eafc5ac0ae4dc309d4156f54462e5cca03a434c93172a13</citedby><cites>FETCH-LOGICAL-c325t-3e382a8045a2570158eafc5ac0ae4dc309d4156f54462e5cca03a434c93172a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2021.113318$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nguyen, Hieu Tri</creatorcontrib><creatorcontrib>Genov, Dentcho A.</creatorcontrib><creatorcontrib>Bardaweel, Hamzeh</creatorcontrib><title>A tunable green power module for portable electronics and IoT sensors: design, fabrication, modeling, characterization, and implementation</title><title>Sensors and actuators. A. Physical.</title><description>•Eco-friendly power module for operating low-power IoT sensors.•Low-frequency specialization, i.e.,1–5 Hz.•Small handheld size of approximately 3.8 × 7.6 × 17.8 cm3.•Normalized power density of approximately 0.537 [mW/cm3 g2].•Generates 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. [Display omitted] The unprecedented worldwide spread of portable electronics and low-power sensors in the era of Internet of Things (IoT) has amplified the demand for alternative sustainable and eco-friendly power sources. In this article, a novel tunable green power module for operating portable electronics is presented. The unique design of the power module allows for low-frequency specialization, i.e., less than 5 Hz, while maintaining a small handheld size, i.e., 3.8 × 7.6 × 17.8 cm3. A mathematical model is developed, and a prototype of the power module is fabricated. Both experiment and model are used to characterize the dynamic behavior of the power module. Results show good agreement between model simulations and experimental data. For a base-excitation of 0.15 g m/s2, the energy harvesting unit has a normalized power density of approximately 0.537 [mW/cm3. g2]. In this article, the ability of the power module to light a group of LEDs and charge a smartphone from human body motion is demonstrated. In these real-world demonstrations, the power module was able to generate 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. Compared to state-of-the-art, the presented power module displays unique features, including its ability to harvest low-density vibrations that are characterized by low frequencies and accelerations.</description><subject>Clean energy</subject><subject>Clean energy harvesting</subject><subject>Electromagnetic energy harvesting</subject><subject>Electronics</subject><subject>Energy harvesting</subject><subject>Green technology</subject><subject>Human motion</subject><subject>Internet of Things</subject><subject>IoT support technology</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Portability</subject><subject>Portable power module</subject><subject>Power sources</subject><subject>Receivers &amp; amplifiers</subject><subject>Sensors</subject><subject>Shaking</subject><subject>Vibration</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAzEMRSMEEqXwAewisWVKXvOCFUK8JCQ2sI5MxlNSTZPiTEHwCXw1KWXNyvK177V1GDuWYiaFrM4WsxRgpoSSMym1ls0Om8im1oUWVbvLJqJVpjDK1PvsIKWFEELrup6w70s-rgO8DMjnhBj4Kn4g8WXs1lnqI2WBxt85DuhGisG7xCF0_D4-8YQhRUrnvMPk5-GU9_BC3sHoY25yCg4-zE-5ewUCNyL5r7_ZJsEvVwMuMYy_2iHb62FIePRXp-z55vrp6q54eLy9v7p8KJxW5Vho1I2CRpgSVFkLWTYIvSvBCUDTOS3azsiy6ktjKoWlcyA0GG1cq2WtQOopO9nmrii-rTGNdhHXFPJJqyojRaWVafOW3G45iikR9nZFfgn0aaWwG-R2YTNyu0Fut8iz52Lrwfz-u0eyyXkMDjtPmZ3tov_H_QOVAIq8</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Nguyen, Hieu Tri</creator><creator>Genov, Dentcho A.</creator><creator>Bardaweel, Hamzeh</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20220201</creationdate><title>A tunable green power module for portable electronics and IoT sensors: design, fabrication, modeling, characterization, and implementation</title><author>Nguyen, Hieu Tri ; Genov, Dentcho A. ; Bardaweel, Hamzeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3e382a8045a2570158eafc5ac0ae4dc309d4156f54462e5cca03a434c93172a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clean energy</topic><topic>Clean energy harvesting</topic><topic>Electromagnetic energy harvesting</topic><topic>Electronics</topic><topic>Energy harvesting</topic><topic>Green technology</topic><topic>Human motion</topic><topic>Internet of Things</topic><topic>IoT support technology</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Portability</topic><topic>Portable power module</topic><topic>Power sources</topic><topic>Receivers &amp; amplifiers</topic><topic>Sensors</topic><topic>Shaking</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hieu Tri</creatorcontrib><creatorcontrib>Genov, Dentcho A.</creatorcontrib><creatorcontrib>Bardaweel, Hamzeh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hieu Tri</au><au>Genov, Dentcho A.</au><au>Bardaweel, Hamzeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tunable green power module for portable electronics and IoT sensors: design, fabrication, modeling, characterization, and implementation</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>334</volume><spage>113318</spage><pages>113318-</pages><artnum>113318</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•Eco-friendly power module for operating low-power IoT sensors.•Low-frequency specialization, i.e.,1–5 Hz.•Small handheld size of approximately 3.8 × 7.6 × 17.8 cm3.•Normalized power density of approximately 0.537 [mW/cm3 g2].•Generates 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. [Display omitted] The unprecedented worldwide spread of portable electronics and low-power sensors in the era of Internet of Things (IoT) has amplified the demand for alternative sustainable and eco-friendly power sources. In this article, a novel tunable green power module for operating portable electronics is presented. The unique design of the power module allows for low-frequency specialization, i.e., less than 5 Hz, while maintaining a small handheld size, i.e., 3.8 × 7.6 × 17.8 cm3. A mathematical model is developed, and a prototype of the power module is fabricated. Both experiment and model are used to characterize the dynamic behavior of the power module. Results show good agreement between model simulations and experimental data. For a base-excitation of 0.15 g m/s2, the energy harvesting unit has a normalized power density of approximately 0.537 [mW/cm3. g2]. In this article, the ability of the power module to light a group of LEDs and charge a smartphone from human body motion is demonstrated. In these real-world demonstrations, the power module was able to generate 35 mW from hand-shaking at 3 Hz and 1.28 g m/s2 and 50 mW from jogging at 1.5 Hz and 1.7 g m/s2. Compared to state-of-the-art, the presented power module displays unique features, including its ability to harvest low-density vibrations that are characterized by low frequencies and accelerations.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2021.113318</doi></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2022-02, Vol.334, p.113318, Article 113318
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2641063249
source Elsevier ScienceDirect Journals Complete
subjects Clean energy
Clean energy harvesting
Electromagnetic energy harvesting
Electronics
Energy harvesting
Green technology
Human motion
Internet of Things
IoT support technology
Mathematical models
Modules
Portability
Portable power module
Power sources
Receivers & amplifiers
Sensors
Shaking
Vibration
title A tunable green power module for portable electronics and IoT sensors: design, fabrication, modeling, characterization, and implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tunable%20green%20power%20module%20for%20portable%20electronics%20and%20IoT%20sensors:%20design,%20fabrication,%20modeling,%20characterization,%20and%20implementation&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Nguyen,%20Hieu%20Tri&rft.date=2022-02-01&rft.volume=334&rft.spage=113318&rft.pages=113318-&rft.artnum=113318&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2021.113318&rft_dat=%3Cproquest_cross%3E2641063249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641063249&rft_id=info:pmid/&rft_els_id=S0924424721007810&rfr_iscdi=true