Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices

Ferromagnetic-resonance-induced variations in the transmittance of Fe films and Fe/Cr superlattices are studied in a microwave frequency interval of 26–38 GHz. The shape of the resonance line is described using a model in which the asymmetry is provided by a Lorentzian dispersion curve added to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technical physics 2021-08, Vol.66 (8), p.917-928
Hauptverfasser: Rinkevich, A. B., Kuznetsov, E. A., Perov, D. V., Milyaev, M. A., Romashev, L. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 928
container_issue 8
container_start_page 917
container_title Technical physics
container_volume 66
creator Rinkevich, A. B.
Kuznetsov, E. A.
Perov, D. V.
Milyaev, M. A.
Romashev, L. N.
description Ferromagnetic-resonance-induced variations in the transmittance of Fe films and Fe/Cr superlattices are studied in a microwave frequency interval of 26–38 GHz. The shape of the resonance line is described using a model in which the asymmetry is provided by a Lorentzian dispersion curve added to the absorption curve. It is shown that the line shape is well described using the model for superlattices with continuous Fe and Cr layers and Fe films. However, only qualitative agreement is obtained for superlattices with thin Fe and Cr layers. The experimental field dependence of the transmission coefficient substantially differs from the model results in the presence of the fields that are less than the field of ferromagnetic resonance for superlattices with giant magnetoresistance.
doi_str_mv 10.1134/S1063784221060153
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2641047533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697623598</galeid><sourcerecordid>A697623598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-e3295f5912fd7703a98469dd547b3ac075e53fc8f6e8f6a323475017a6ddc03c3</originalsourceid><addsrcrecordid>eNp1kN9LwzAQgIsoOKd_gG8Fn6tJrknaxzHmD5goTvGxxPTSdXTNTFLB_96MCgoiR7gj9325cElyTsklpZBfrSgRIIucsVgQyuEgmVBSkkxwxg_3tYBs3z9OTrzfEEJpwcUkeblG5-xWNT2GVqdP6G2veo2psS5ddKjDr-6r-kCfPirv275Jw9rZoVmn9xhUl66GHbpOhcihP02OjOo8nn3naZyzeJ7fZsuHm7v5bJlpIDJkCKzkhpeUmVpKAqosclHWNc_lGyhNJEcORhdGYDwKGOSSEyqVqGtNQMM0uRjf3Tn7PqAP1cYOro8jKyZySiIOEKnLkWpUh1XbGxuc0jFq3Lba9mjaeD8TpRQMeFlEgY6CdtZ7h6bauXar3GdFSbVfd_Vn3dFho-Mj2zfofr7yv_QFv9iA_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641047533</pqid></control><display><type>article</type><title>Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices</title><source>SpringerLink Journals</source><creator>Rinkevich, A. B. ; Kuznetsov, E. A. ; Perov, D. V. ; Milyaev, M. A. ; Romashev, L. N.</creator><creatorcontrib>Rinkevich, A. B. ; Kuznetsov, E. A. ; Perov, D. V. ; Milyaev, M. A. ; Romashev, L. N.</creatorcontrib><description>Ferromagnetic-resonance-induced variations in the transmittance of Fe films and Fe/Cr superlattices are studied in a microwave frequency interval of 26–38 GHz. The shape of the resonance line is described using a model in which the asymmetry is provided by a Lorentzian dispersion curve added to the absorption curve. It is shown that the line shape is well described using the model for superlattices with continuous Fe and Cr layers and Fe films. However, only qualitative agreement is obtained for superlattices with thin Fe and Cr layers. The experimental field dependence of the transmission coefficient substantially differs from the model results in the presence of the fields that are less than the field of ferromagnetic resonance for superlattices with giant magnetoresistance.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784221060153</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Chromium ; Classical and Continuum Physics ; Dispersion curve analysis ; Electric waves ; Electromagnetic radiation ; Electromagnetic waves ; Ferromagnetic materials ; Ferromagnetic resonance ; Ferromagnetism ; Giant magnetoresistance ; Iron ; Line shape ; Magnetoresistivity ; Microwave frequencies ; Physics ; Physics and Astronomy ; Qualitative analysis ; Resonance lines ; Superlattices ; Thin films</subject><ispartof>Technical physics, 2021-08, Vol.66 (8), p.917-928</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1063-7842, Technical Physics, 2021, Vol. 66, No. 8, pp. 917–928. © Pleiades Publishing, Ltd., 2021. ISSN 1063-7842, Technical Physics, 2021. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Tekhnicheskoi Fiziki, 2021, Vol. 91, No. 6, pp. 997–1008.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-e3295f5912fd7703a98469dd547b3ac075e53fc8f6e8f6a323475017a6ddc03c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063784221060153$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063784221060153$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rinkevich, A. B.</creatorcontrib><creatorcontrib>Kuznetsov, E. A.</creatorcontrib><creatorcontrib>Perov, D. V.</creatorcontrib><creatorcontrib>Milyaev, M. A.</creatorcontrib><creatorcontrib>Romashev, L. N.</creatorcontrib><title>Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>Ferromagnetic-resonance-induced variations in the transmittance of Fe films and Fe/Cr superlattices are studied in a microwave frequency interval of 26–38 GHz. The shape of the resonance line is described using a model in which the asymmetry is provided by a Lorentzian dispersion curve added to the absorption curve. It is shown that the line shape is well described using the model for superlattices with continuous Fe and Cr layers and Fe films. However, only qualitative agreement is obtained for superlattices with thin Fe and Cr layers. The experimental field dependence of the transmission coefficient substantially differs from the model results in the presence of the fields that are less than the field of ferromagnetic resonance for superlattices with giant magnetoresistance.</description><subject>Analysis</subject><subject>Chromium</subject><subject>Classical and Continuum Physics</subject><subject>Dispersion curve analysis</subject><subject>Electric waves</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Giant magnetoresistance</subject><subject>Iron</subject><subject>Line shape</subject><subject>Magnetoresistivity</subject><subject>Microwave frequencies</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Qualitative analysis</subject><subject>Resonance lines</subject><subject>Superlattices</subject><subject>Thin films</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kN9LwzAQgIsoOKd_gG8Fn6tJrknaxzHmD5goTvGxxPTSdXTNTFLB_96MCgoiR7gj9325cElyTsklpZBfrSgRIIucsVgQyuEgmVBSkkxwxg_3tYBs3z9OTrzfEEJpwcUkeblG5-xWNT2GVqdP6G2veo2psS5ddKjDr-6r-kCfPirv275Jw9rZoVmn9xhUl66GHbpOhcihP02OjOo8nn3naZyzeJ7fZsuHm7v5bJlpIDJkCKzkhpeUmVpKAqosclHWNc_lGyhNJEcORhdGYDwKGOSSEyqVqGtNQMM0uRjf3Tn7PqAP1cYOro8jKyZySiIOEKnLkWpUh1XbGxuc0jFq3Lba9mjaeD8TpRQMeFlEgY6CdtZ7h6bauXar3GdFSbVfd_Vn3dFho-Mj2zfofr7yv_QFv9iA_w</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Rinkevich, A. B.</creator><creator>Kuznetsov, E. A.</creator><creator>Perov, D. V.</creator><creator>Milyaev, M. A.</creator><creator>Romashev, L. N.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices</title><author>Rinkevich, A. B. ; Kuznetsov, E. A. ; Perov, D. V. ; Milyaev, M. A. ; Romashev, L. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-e3295f5912fd7703a98469dd547b3ac075e53fc8f6e8f6a323475017a6ddc03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Chromium</topic><topic>Classical and Continuum Physics</topic><topic>Dispersion curve analysis</topic><topic>Electric waves</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Giant magnetoresistance</topic><topic>Iron</topic><topic>Line shape</topic><topic>Magnetoresistivity</topic><topic>Microwave frequencies</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Qualitative analysis</topic><topic>Resonance lines</topic><topic>Superlattices</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinkevich, A. B.</creatorcontrib><creatorcontrib>Kuznetsov, E. A.</creatorcontrib><creatorcontrib>Perov, D. V.</creatorcontrib><creatorcontrib>Milyaev, M. A.</creatorcontrib><creatorcontrib>Romashev, L. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinkevich, A. B.</au><au>Kuznetsov, E. A.</au><au>Perov, D. V.</au><au>Milyaev, M. A.</au><au>Romashev, L. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>66</volume><issue>8</issue><spage>917</spage><epage>928</epage><pages>917-928</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>Ferromagnetic-resonance-induced variations in the transmittance of Fe films and Fe/Cr superlattices are studied in a microwave frequency interval of 26–38 GHz. The shape of the resonance line is described using a model in which the asymmetry is provided by a Lorentzian dispersion curve added to the absorption curve. It is shown that the line shape is well described using the model for superlattices with continuous Fe and Cr layers and Fe films. However, only qualitative agreement is obtained for superlattices with thin Fe and Cr layers. The experimental field dependence of the transmission coefficient substantially differs from the model results in the presence of the fields that are less than the field of ferromagnetic resonance for superlattices with giant magnetoresistance.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784221060153</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7842
ispartof Technical physics, 2021-08, Vol.66 (8), p.917-928
issn 1063-7842
1090-6525
language eng
recordid cdi_proquest_journals_2641047533
source SpringerLink Journals
subjects Analysis
Chromium
Classical and Continuum Physics
Dispersion curve analysis
Electric waves
Electromagnetic radiation
Electromagnetic waves
Ferromagnetic materials
Ferromagnetic resonance
Ferromagnetism
Giant magnetoresistance
Iron
Line shape
Magnetoresistivity
Microwave frequencies
Physics
Physics and Astronomy
Qualitative analysis
Resonance lines
Superlattices
Thin films
title Ferromagnetic Resonance for Electromagnetic Waves Passing through Metal Superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnetic%20Resonance%20for%20Electromagnetic%20Waves%20Passing%20through%20Metal%20Superlattices&rft.jtitle=Technical%20physics&rft.au=Rinkevich,%20A.%20B.&rft.date=2021-08-01&rft.volume=66&rft.issue=8&rft.spage=917&rft.epage=928&rft.pages=917-928&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784221060153&rft_dat=%3Cgale_proqu%3EA697623598%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641047533&rft_id=info:pmid/&rft_galeid=A697623598&rfr_iscdi=true