Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron

The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2021-07, Vol.63 (7), p.1065-1068
Hauptverfasser: Rakitin, M. S., Mirzoev, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1068
container_issue 7
container_start_page 1065
container_title Physics of the solid state
container_volume 63
creator Rakitin, M. S.
Mirzoev, A. A.
description The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.
doi_str_mv 10.1134/S1063783421070180
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2641036559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697623159</galeid><sourcerecordid>A697623159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-63d60487dc9f32bfb911e5279f88ba343868157e73dc3c0986770287826385b3</originalsourceid><addsrcrecordid>eNp1kd9LwzAQgIsoqNM_wLeAT4KduV6bpI9TpxsIgtt7adO0ZmzJTFp0_73ZDxARCSR3yffdBS6KroAOATC9mwFlyAWmCVBOQdCj6AxoTmOWMnq8jRnG2_fT6Nz7BaUAkOVnkRtVRBvdaUtmetUvyxAZYhvyqL23y36Xjo1y7YaUpib3NmyHPFCTTe1sqwz51N07Qb--JVjf7si0JtPVunehtvKhB6mkJFNnzUV00pRLry4P5yCaP43nD5P45fV5-jB6iSWm0MUMa0ZTwWuZN5hUTZUDqCzheSNEVWKKggnIuOJYS5Q0F4xzmgguEoYiq3AQXe_Lrp396JXvioXtnQkdi4SlQJFlWR6o4Z5qy6UqtGls50oZVq1WWlqjGh3uRyznLEHYCTe_hMB06qtry977Yjp7-83CnpXOeu9UU6ydXpVuUwAttmMr_owtOMne8YE1rXI_3_5f-gaXk5U6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641036559</pqid></control><display><type>article</type><title>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</title><source>SpringerNature Journals</source><creator>Rakitin, M. S. ; Mirzoev, A. A.</creator><creatorcontrib>Rakitin, M. S. ; Mirzoev, A. A.</creatorcontrib><description>The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783421070180</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Analysis ; Bond energy ; Chromium ; Copper ; Density functional theory ; Density functionals ; Dissolution ; Electron density ; Energy ; Hydrogen ; Hydrogen atoms ; Hydrogen embrittlement ; Hydrogen-based energy ; Localization ; Magnesium ; Manganese ; Molybdenum ; Niobium ; Palladium ; Physics ; Physics and Astronomy ; Silicon ; Solid State Physics ; Specific gravity ; Substitutional impurities ; Titanium ; Zinc ; Zirconium</subject><ispartof>Physics of the solid state, 2021-07, Vol.63 (7), p.1065-1068</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1063-7834, Physics of the Solid State, 2021, Vol. 63, No. 7, pp. 1065–1068. © Pleiades Publishing, Ltd., 2021. ISSN 1063-7834, Physics of the Solid State, 2021. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Fizika Tverdogo Tela, 2021, Vol. 63, No. 7, pp. 830–833.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-63d60487dc9f32bfb911e5279f88ba343868157e73dc3c0986770287826385b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783421070180$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783421070180$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rakitin, M. S.</creatorcontrib><creatorcontrib>Mirzoev, A. A.</creatorcontrib><title>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Bond energy</subject><subject>Chromium</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Density functionals</subject><subject>Dissolution</subject><subject>Electron density</subject><subject>Energy</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen-based energy</subject><subject>Localization</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Molybdenum</subject><subject>Niobium</subject><subject>Palladium</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Silicon</subject><subject>Solid State Physics</subject><subject>Specific gravity</subject><subject>Substitutional impurities</subject><subject>Titanium</subject><subject>Zinc</subject><subject>Zirconium</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kd9LwzAQgIsoqNM_wLeAT4KduV6bpI9TpxsIgtt7adO0ZmzJTFp0_73ZDxARCSR3yffdBS6KroAOATC9mwFlyAWmCVBOQdCj6AxoTmOWMnq8jRnG2_fT6Nz7BaUAkOVnkRtVRBvdaUtmetUvyxAZYhvyqL23y36Xjo1y7YaUpib3NmyHPFCTTe1sqwz51N07Qb--JVjf7si0JtPVunehtvKhB6mkJFNnzUV00pRLry4P5yCaP43nD5P45fV5-jB6iSWm0MUMa0ZTwWuZN5hUTZUDqCzheSNEVWKKggnIuOJYS5Q0F4xzmgguEoYiq3AQXe_Lrp396JXvioXtnQkdi4SlQJFlWR6o4Z5qy6UqtGls50oZVq1WWlqjGh3uRyznLEHYCTe_hMB06qtry977Yjp7-83CnpXOeu9UU6ydXpVuUwAttmMr_owtOMne8YE1rXI_3_5f-gaXk5U6</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Rakitin, M. S.</creator><creator>Mirzoev, A. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210701</creationdate><title>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</title><author>Rakitin, M. S. ; Mirzoev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-63d60487dc9f32bfb911e5279f88ba343868157e73dc3c0986770287826385b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Bond energy</topic><topic>Chromium</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Density functionals</topic><topic>Dissolution</topic><topic>Electron density</topic><topic>Energy</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen-based energy</topic><topic>Localization</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Molybdenum</topic><topic>Niobium</topic><topic>Palladium</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Silicon</topic><topic>Solid State Physics</topic><topic>Specific gravity</topic><topic>Substitutional impurities</topic><topic>Titanium</topic><topic>Zinc</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakitin, M. S.</creatorcontrib><creatorcontrib>Mirzoev, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakitin, M. S.</au><au>Mirzoev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>63</volume><issue>7</issue><spage>1065</spage><epage>1068</epage><pages>1065-1068</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783421070180</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2021-07, Vol.63 (7), p.1065-1068
issn 1063-7834
1090-6460
language eng
recordid cdi_proquest_journals_2641036559
source SpringerNature Journals
subjects Aluminum
Analysis
Bond energy
Chromium
Copper
Density functional theory
Density functionals
Dissolution
Electron density
Energy
Hydrogen
Hydrogen atoms
Hydrogen embrittlement
Hydrogen-based energy
Localization
Magnesium
Manganese
Molybdenum
Niobium
Palladium
Physics
Physics and Astronomy
Silicon
Solid State Physics
Specific gravity
Substitutional impurities
Titanium
Zinc
Zirconium
title Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20Simulation%20of%20Dissolution%20Energy%20and%20Bond%20Energy%20of%20Hydrogen%20with%203sp,%203d,%20and%204d%20Impurities%20in%20bcc%20Iron&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Rakitin,%20M.%20S.&rft.date=2021-07-01&rft.volume=63&rft.issue=7&rft.spage=1065&rft.epage=1068&rft.pages=1065-1068&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783421070180&rft_dat=%3Cgale_proqu%3EA697623159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641036559&rft_id=info:pmid/&rft_galeid=A697623159&rfr_iscdi=true