Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron
The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and...
Gespeichert in:
Veröffentlicht in: | Physics of the solid state 2021-07, Vol.63 (7), p.1065-1068 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1068 |
---|---|
container_issue | 7 |
container_start_page | 1065 |
container_title | Physics of the solid state |
container_volume | 63 |
creator | Rakitin, M. S. Mirzoev, A. A. |
description | The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants. |
doi_str_mv | 10.1134/S1063783421070180 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2641036559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697623159</galeid><sourcerecordid>A697623159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-63d60487dc9f32bfb911e5279f88ba343868157e73dc3c0986770287826385b3</originalsourceid><addsrcrecordid>eNp1kd9LwzAQgIsoqNM_wLeAT4KduV6bpI9TpxsIgtt7adO0ZmzJTFp0_73ZDxARCSR3yffdBS6KroAOATC9mwFlyAWmCVBOQdCj6AxoTmOWMnq8jRnG2_fT6Nz7BaUAkOVnkRtVRBvdaUtmetUvyxAZYhvyqL23y36Xjo1y7YaUpib3NmyHPFCTTe1sqwz51N07Qb--JVjf7si0JtPVunehtvKhB6mkJFNnzUV00pRLry4P5yCaP43nD5P45fV5-jB6iSWm0MUMa0ZTwWuZN5hUTZUDqCzheSNEVWKKggnIuOJYS5Q0F4xzmgguEoYiq3AQXe_Lrp396JXvioXtnQkdi4SlQJFlWR6o4Z5qy6UqtGls50oZVq1WWlqjGh3uRyznLEHYCTe_hMB06qtry977Yjp7-83CnpXOeu9UU6ydXpVuUwAttmMr_owtOMne8YE1rXI_3_5f-gaXk5U6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641036559</pqid></control><display><type>article</type><title>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</title><source>SpringerNature Journals</source><creator>Rakitin, M. S. ; Mirzoev, A. A.</creator><creatorcontrib>Rakitin, M. S. ; Mirzoev, A. A.</creatorcontrib><description>The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783421070180</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Analysis ; Bond energy ; Chromium ; Copper ; Density functional theory ; Density functionals ; Dissolution ; Electron density ; Energy ; Hydrogen ; Hydrogen atoms ; Hydrogen embrittlement ; Hydrogen-based energy ; Localization ; Magnesium ; Manganese ; Molybdenum ; Niobium ; Palladium ; Physics ; Physics and Astronomy ; Silicon ; Solid State Physics ; Specific gravity ; Substitutional impurities ; Titanium ; Zinc ; Zirconium</subject><ispartof>Physics of the solid state, 2021-07, Vol.63 (7), p.1065-1068</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1063-7834, Physics of the Solid State, 2021, Vol. 63, No. 7, pp. 1065–1068. © Pleiades Publishing, Ltd., 2021. ISSN 1063-7834, Physics of the Solid State, 2021. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Fizika Tverdogo Tela, 2021, Vol. 63, No. 7, pp. 830–833.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-63d60487dc9f32bfb911e5279f88ba343868157e73dc3c0986770287826385b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783421070180$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783421070180$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rakitin, M. S.</creatorcontrib><creatorcontrib>Mirzoev, A. A.</creatorcontrib><title>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Bond energy</subject><subject>Chromium</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Density functionals</subject><subject>Dissolution</subject><subject>Electron density</subject><subject>Energy</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen-based energy</subject><subject>Localization</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Molybdenum</subject><subject>Niobium</subject><subject>Palladium</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Silicon</subject><subject>Solid State Physics</subject><subject>Specific gravity</subject><subject>Substitutional impurities</subject><subject>Titanium</subject><subject>Zinc</subject><subject>Zirconium</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kd9LwzAQgIsoqNM_wLeAT4KduV6bpI9TpxsIgtt7adO0ZmzJTFp0_73ZDxARCSR3yffdBS6KroAOATC9mwFlyAWmCVBOQdCj6AxoTmOWMnq8jRnG2_fT6Nz7BaUAkOVnkRtVRBvdaUtmetUvyxAZYhvyqL23y36Xjo1y7YaUpib3NmyHPFCTTe1sqwz51N07Qb--JVjf7si0JtPVunehtvKhB6mkJFNnzUV00pRLry4P5yCaP43nD5P45fV5-jB6iSWm0MUMa0ZTwWuZN5hUTZUDqCzheSNEVWKKggnIuOJYS5Q0F4xzmgguEoYiq3AQXe_Lrp396JXvioXtnQkdi4SlQJFlWR6o4Z5qy6UqtGls50oZVq1WWlqjGh3uRyznLEHYCTe_hMB06qtry977Yjp7-83CnpXOeu9UU6ydXpVuUwAttmMr_owtOMne8YE1rXI_3_5f-gaXk5U6</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Rakitin, M. S.</creator><creator>Mirzoev, A. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210701</creationdate><title>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</title><author>Rakitin, M. S. ; Mirzoev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-63d60487dc9f32bfb911e5279f88ba343868157e73dc3c0986770287826385b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Bond energy</topic><topic>Chromium</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Density functionals</topic><topic>Dissolution</topic><topic>Electron density</topic><topic>Energy</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen-based energy</topic><topic>Localization</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Molybdenum</topic><topic>Niobium</topic><topic>Palladium</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Silicon</topic><topic>Solid State Physics</topic><topic>Specific gravity</topic><topic>Substitutional impurities</topic><topic>Titanium</topic><topic>Zinc</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakitin, M. S.</creatorcontrib><creatorcontrib>Mirzoev, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakitin, M. S.</au><au>Mirzoev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>63</volume><issue>7</issue><spage>1065</spage><epage>1068</epage><pages>1065-1068</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783421070180</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7834 |
ispartof | Physics of the solid state, 2021-07, Vol.63 (7), p.1065-1068 |
issn | 1063-7834 1090-6460 |
language | eng |
recordid | cdi_proquest_journals_2641036559 |
source | SpringerNature Journals |
subjects | Aluminum Analysis Bond energy Chromium Copper Density functional theory Density functionals Dissolution Electron density Energy Hydrogen Hydrogen atoms Hydrogen embrittlement Hydrogen-based energy Localization Magnesium Manganese Molybdenum Niobium Palladium Physics Physics and Astronomy Silicon Solid State Physics Specific gravity Substitutional impurities Titanium Zinc Zirconium |
title | Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20Simulation%20of%20Dissolution%20Energy%20and%20Bond%20Energy%20of%20Hydrogen%20with%203sp,%203d,%20and%204d%20Impurities%20in%20bcc%20Iron&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Rakitin,%20M.%20S.&rft.date=2021-07-01&rft.volume=63&rft.issue=7&rft.spage=1065&rft.epage=1068&rft.pages=1065-1068&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783421070180&rft_dat=%3Cgale_proqu%3EA697623159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641036559&rft_id=info:pmid/&rft_galeid=A697623159&rfr_iscdi=true |