Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels
The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels via a phenolated...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2022-03, Vol.24 (6), p.2409-2422 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2422 |
---|---|
container_issue | 6 |
container_start_page | 2409 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 24 |
creator | Jafari, Hafez Delporte, Christine Bernaerts, Katrien V. Alimoradi, Houman Nie, Lei Podstawczyk, Daria Tam, Kam Chiu Shavandi, Amin |
description | The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels
via
a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of
in situ
phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking. |
doi_str_mv | 10.1039/D1GC04347A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640975924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640975924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBBIlMKFL7DEDSmwfiSuj1ULBakSB-AcOYndukrsYCcS5Qv4bFwVwWlnd2dHO4PQNYE7AkzeL8lqAZxxMT9BE8ILlkkq4PQPF_QcXcS4AyBEFHyCvl_3ToeNjYOtce27vtWfarDeYW9wv9XOt9iMrj6MVGu_dIN73-47HbB1zVin3joc7TDiztbBG1ullfGhO6okhNkS98G6wbrNQbVTqdFZpWI63u6b4De6jZfozKg26qvfOkXvjw9vi6ds_bJ6XszXWU1lPmSNAtFQkguaixy0SSZ4bvIKuCykAA3M1A1LQ66olCBkRaGpZpoRNUt3mk3RzVG3D_5j1HEod34MyVssacFBilxSnli3R1ayFGPQpkwO0uP7kkB5SLr8T5r9AC8JcoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640975924</pqid></control><display><type>article</type><title>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Jafari, Hafez ; Delporte, Christine ; Bernaerts, Katrien V. ; Alimoradi, Houman ; Nie, Lei ; Podstawczyk, Daria ; Tam, Kam Chiu ; Shavandi, Amin</creator><creatorcontrib>Jafari, Hafez ; Delporte, Christine ; Bernaerts, Katrien V. ; Alimoradi, Houman ; Nie, Lei ; Podstawczyk, Daria ; Tam, Kam Chiu ; Shavandi, Amin</creatorcontrib><description>The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels
via
a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of
in situ
phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/D1GC04347A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alginates ; Alginic acid ; Biomedical materials ; Chemical modification ; Chitosan ; Complexation ; Crosslinking ; Enzymes ; Green chemistry ; Hydrogels ; Loss modulus ; Mechanical properties ; Microfibers ; Moldability ; Phenols ; Polyelectrolytes ; Polymers ; Three dimensional printing</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2022-03, Vol.24 (6), p.2409-2422</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</citedby><cites>FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</cites><orcidid>0000-0003-0950-6836 ; 0000-0002-2939-2963 ; 0000-0002-7603-5635 ; 0000-0003-4087-0273 ; 0000-0002-0188-3090 ; 0000-0002-6175-5883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jafari, Hafez</creatorcontrib><creatorcontrib>Delporte, Christine</creatorcontrib><creatorcontrib>Bernaerts, Katrien V.</creatorcontrib><creatorcontrib>Alimoradi, Houman</creatorcontrib><creatorcontrib>Nie, Lei</creatorcontrib><creatorcontrib>Podstawczyk, Daria</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><creatorcontrib>Shavandi, Amin</creatorcontrib><title>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels
via
a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of
in situ
phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking.</description><subject>Alginates</subject><subject>Alginic acid</subject><subject>Biomedical materials</subject><subject>Chemical modification</subject><subject>Chitosan</subject><subject>Complexation</subject><subject>Crosslinking</subject><subject>Enzymes</subject><subject>Green chemistry</subject><subject>Hydrogels</subject><subject>Loss modulus</subject><subject>Mechanical properties</subject><subject>Microfibers</subject><subject>Moldability</subject><subject>Phenols</subject><subject>Polyelectrolytes</subject><subject>Polymers</subject><subject>Three dimensional printing</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQtBBIlMKFL7DEDSmwfiSuj1ULBakSB-AcOYndukrsYCcS5Qv4bFwVwWlnd2dHO4PQNYE7AkzeL8lqAZxxMT9BE8ILlkkq4PQPF_QcXcS4AyBEFHyCvl_3ToeNjYOtce27vtWfarDeYW9wv9XOt9iMrj6MVGu_dIN73-47HbB1zVin3joc7TDiztbBG1ullfGhO6okhNkS98G6wbrNQbVTqdFZpWI63u6b4De6jZfozKg26qvfOkXvjw9vi6ds_bJ6XszXWU1lPmSNAtFQkguaixy0SSZ4bvIKuCykAA3M1A1LQ66olCBkRaGpZpoRNUt3mk3RzVG3D_5j1HEod34MyVssacFBilxSnli3R1ayFGPQpkwO0uP7kkB5SLr8T5r9AC8JcoQ</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Jafari, Hafez</creator><creator>Delporte, Christine</creator><creator>Bernaerts, Katrien V.</creator><creator>Alimoradi, Houman</creator><creator>Nie, Lei</creator><creator>Podstawczyk, Daria</creator><creator>Tam, Kam Chiu</creator><creator>Shavandi, Amin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0950-6836</orcidid><orcidid>https://orcid.org/0000-0002-2939-2963</orcidid><orcidid>https://orcid.org/0000-0002-7603-5635</orcidid><orcidid>https://orcid.org/0000-0003-4087-0273</orcidid><orcidid>https://orcid.org/0000-0002-0188-3090</orcidid><orcidid>https://orcid.org/0000-0002-6175-5883</orcidid></search><sort><creationdate>20220321</creationdate><title>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</title><author>Jafari, Hafez ; Delporte, Christine ; Bernaerts, Katrien V. ; Alimoradi, Houman ; Nie, Lei ; Podstawczyk, Daria ; Tam, Kam Chiu ; Shavandi, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alginates</topic><topic>Alginic acid</topic><topic>Biomedical materials</topic><topic>Chemical modification</topic><topic>Chitosan</topic><topic>Complexation</topic><topic>Crosslinking</topic><topic>Enzymes</topic><topic>Green chemistry</topic><topic>Hydrogels</topic><topic>Loss modulus</topic><topic>Mechanical properties</topic><topic>Microfibers</topic><topic>Moldability</topic><topic>Phenols</topic><topic>Polyelectrolytes</topic><topic>Polymers</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, Hafez</creatorcontrib><creatorcontrib>Delporte, Christine</creatorcontrib><creatorcontrib>Bernaerts, Katrien V.</creatorcontrib><creatorcontrib>Alimoradi, Houman</creatorcontrib><creatorcontrib>Nie, Lei</creatorcontrib><creatorcontrib>Podstawczyk, Daria</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><creatorcontrib>Shavandi, Amin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, Hafez</au><au>Delporte, Christine</au><au>Bernaerts, Katrien V.</au><au>Alimoradi, Houman</au><au>Nie, Lei</au><au>Podstawczyk, Daria</au><au>Tam, Kam Chiu</au><au>Shavandi, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2022-03-21</date><risdate>2022</risdate><volume>24</volume><issue>6</issue><spage>2409</spage><epage>2422</epage><pages>2409-2422</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels
via
a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of
in situ
phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1GC04347A</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0950-6836</orcidid><orcidid>https://orcid.org/0000-0002-2939-2963</orcidid><orcidid>https://orcid.org/0000-0002-7603-5635</orcidid><orcidid>https://orcid.org/0000-0003-4087-0273</orcidid><orcidid>https://orcid.org/0000-0002-0188-3090</orcidid><orcidid>https://orcid.org/0000-0002-6175-5883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2022-03, Vol.24 (6), p.2409-2422 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_proquest_journals_2640975924 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Alginates Alginic acid Biomedical materials Chemical modification Chitosan Complexation Crosslinking Enzymes Green chemistry Hydrogels Loss modulus Mechanical properties Microfibers Moldability Phenols Polyelectrolytes Polymers Three dimensional printing |
title | Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20complexation%20of%20phenol%20functionalized%20polymer%20induced%20in%20situ%20microfiber%20formation%20for%203D%20printing%20of%20marine-based%20hydrogels&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Jafari,%20Hafez&rft.date=2022-03-21&rft.volume=24&rft.issue=6&rft.spage=2409&rft.epage=2422&rft.pages=2409-2422&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/D1GC04347A&rft_dat=%3Cproquest_cross%3E2640975924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640975924&rft_id=info:pmid/&rfr_iscdi=true |