Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels

The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels via a phenolated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2022-03, Vol.24 (6), p.2409-2422
Hauptverfasser: Jafari, Hafez, Delporte, Christine, Bernaerts, Katrien V., Alimoradi, Houman, Nie, Lei, Podstawczyk, Daria, Tam, Kam Chiu, Shavandi, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2422
container_issue 6
container_start_page 2409
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 24
creator Jafari, Hafez
Delporte, Christine
Bernaerts, Katrien V.
Alimoradi, Houman
Nie, Lei
Podstawczyk, Daria
Tam, Kam Chiu
Shavandi, Amin
description The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels via a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of in situ phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking.
doi_str_mv 10.1039/D1GC04347A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640975924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640975924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBBIlMKFL7DEDSmwfiSuj1ULBakSB-AcOYndukrsYCcS5Qv4bFwVwWlnd2dHO4PQNYE7AkzeL8lqAZxxMT9BE8ILlkkq4PQPF_QcXcS4AyBEFHyCvl_3ToeNjYOtce27vtWfarDeYW9wv9XOt9iMrj6MVGu_dIN73-47HbB1zVin3joc7TDiztbBG1ullfGhO6okhNkS98G6wbrNQbVTqdFZpWI63u6b4De6jZfozKg26qvfOkXvjw9vi6ds_bJ6XszXWU1lPmSNAtFQkguaixy0SSZ4bvIKuCykAA3M1A1LQ66olCBkRaGpZpoRNUt3mk3RzVG3D_5j1HEod34MyVssacFBilxSnli3R1ayFGPQpkwO0uP7kkB5SLr8T5r9AC8JcoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640975924</pqid></control><display><type>article</type><title>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Jafari, Hafez ; Delporte, Christine ; Bernaerts, Katrien V. ; Alimoradi, Houman ; Nie, Lei ; Podstawczyk, Daria ; Tam, Kam Chiu ; Shavandi, Amin</creator><creatorcontrib>Jafari, Hafez ; Delporte, Christine ; Bernaerts, Katrien V. ; Alimoradi, Houman ; Nie, Lei ; Podstawczyk, Daria ; Tam, Kam Chiu ; Shavandi, Amin</creatorcontrib><description>The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels via a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of in situ phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/D1GC04347A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alginates ; Alginic acid ; Biomedical materials ; Chemical modification ; Chitosan ; Complexation ; Crosslinking ; Enzymes ; Green chemistry ; Hydrogels ; Loss modulus ; Mechanical properties ; Microfibers ; Moldability ; Phenols ; Polyelectrolytes ; Polymers ; Three dimensional printing</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2022-03, Vol.24 (6), p.2409-2422</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</citedby><cites>FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</cites><orcidid>0000-0003-0950-6836 ; 0000-0002-2939-2963 ; 0000-0002-7603-5635 ; 0000-0003-4087-0273 ; 0000-0002-0188-3090 ; 0000-0002-6175-5883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jafari, Hafez</creatorcontrib><creatorcontrib>Delporte, Christine</creatorcontrib><creatorcontrib>Bernaerts, Katrien V.</creatorcontrib><creatorcontrib>Alimoradi, Houman</creatorcontrib><creatorcontrib>Nie, Lei</creatorcontrib><creatorcontrib>Podstawczyk, Daria</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><creatorcontrib>Shavandi, Amin</creatorcontrib><title>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels via a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of in situ phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking.</description><subject>Alginates</subject><subject>Alginic acid</subject><subject>Biomedical materials</subject><subject>Chemical modification</subject><subject>Chitosan</subject><subject>Complexation</subject><subject>Crosslinking</subject><subject>Enzymes</subject><subject>Green chemistry</subject><subject>Hydrogels</subject><subject>Loss modulus</subject><subject>Mechanical properties</subject><subject>Microfibers</subject><subject>Moldability</subject><subject>Phenols</subject><subject>Polyelectrolytes</subject><subject>Polymers</subject><subject>Three dimensional printing</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQtBBIlMKFL7DEDSmwfiSuj1ULBakSB-AcOYndukrsYCcS5Qv4bFwVwWlnd2dHO4PQNYE7AkzeL8lqAZxxMT9BE8ILlkkq4PQPF_QcXcS4AyBEFHyCvl_3ToeNjYOtce27vtWfarDeYW9wv9XOt9iMrj6MVGu_dIN73-47HbB1zVin3joc7TDiztbBG1ullfGhO6okhNkS98G6wbrNQbVTqdFZpWI63u6b4De6jZfozKg26qvfOkXvjw9vi6ds_bJ6XszXWU1lPmSNAtFQkguaixy0SSZ4bvIKuCykAA3M1A1LQ66olCBkRaGpZpoRNUt3mk3RzVG3D_5j1HEod34MyVssacFBilxSnli3R1ayFGPQpkwO0uP7kkB5SLr8T5r9AC8JcoQ</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Jafari, Hafez</creator><creator>Delporte, Christine</creator><creator>Bernaerts, Katrien V.</creator><creator>Alimoradi, Houman</creator><creator>Nie, Lei</creator><creator>Podstawczyk, Daria</creator><creator>Tam, Kam Chiu</creator><creator>Shavandi, Amin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0950-6836</orcidid><orcidid>https://orcid.org/0000-0002-2939-2963</orcidid><orcidid>https://orcid.org/0000-0002-7603-5635</orcidid><orcidid>https://orcid.org/0000-0003-4087-0273</orcidid><orcidid>https://orcid.org/0000-0002-0188-3090</orcidid><orcidid>https://orcid.org/0000-0002-6175-5883</orcidid></search><sort><creationdate>20220321</creationdate><title>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</title><author>Jafari, Hafez ; Delporte, Christine ; Bernaerts, Katrien V. ; Alimoradi, Houman ; Nie, Lei ; Podstawczyk, Daria ; Tam, Kam Chiu ; Shavandi, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-da07d215725750ef76445f5b0496970e03fcd36444a299079b20db8e31a8d21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alginates</topic><topic>Alginic acid</topic><topic>Biomedical materials</topic><topic>Chemical modification</topic><topic>Chitosan</topic><topic>Complexation</topic><topic>Crosslinking</topic><topic>Enzymes</topic><topic>Green chemistry</topic><topic>Hydrogels</topic><topic>Loss modulus</topic><topic>Mechanical properties</topic><topic>Microfibers</topic><topic>Moldability</topic><topic>Phenols</topic><topic>Polyelectrolytes</topic><topic>Polymers</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, Hafez</creatorcontrib><creatorcontrib>Delporte, Christine</creatorcontrib><creatorcontrib>Bernaerts, Katrien V.</creatorcontrib><creatorcontrib>Alimoradi, Houman</creatorcontrib><creatorcontrib>Nie, Lei</creatorcontrib><creatorcontrib>Podstawczyk, Daria</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><creatorcontrib>Shavandi, Amin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, Hafez</au><au>Delporte, Christine</au><au>Bernaerts, Katrien V.</au><au>Alimoradi, Houman</au><au>Nie, Lei</au><au>Podstawczyk, Daria</au><au>Tam, Kam Chiu</au><au>Shavandi, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2022-03-21</date><risdate>2022</risdate><volume>24</volume><issue>6</issue><spage>2409</spage><epage>2422</epage><pages>2409-2422</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>The design of 3D printable bio-based hydrogels with enhanced mechanical properties and minimal chemical modification can open new opportunities in the field of biomedical applications. A facile and safe approach is proposed to prepare mechanically reinforced chitosan-based hydrogels via a phenolated polyelectrolyte complex (PHEC) and enzyme-mediated crosslinking. PHEC was formed between phenolated chitosan and alginate, leading to the formation of in situ phenol-functionalized microfibers that exhibited excellent 3D printability. The synergistic complexation enhanced the loss modulus (60 times), toughness, flexibility, and moldability of hydrogel as well as dynamic viscosity (20 times) of the hydrogel precursor compared to individual phenolated chitosan and alginate hydrogels. This complexation endowed the material with excellent printability without sacrificing the hydrogel's elasticity. This study proposes a strategy to design tough and 3D printable marine-based hydrogels based on the synergistic complexation of a phenolated polyelectrolyte complex and enzyme-mediated crosslinking.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1GC04347A</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0950-6836</orcidid><orcidid>https://orcid.org/0000-0002-2939-2963</orcidid><orcidid>https://orcid.org/0000-0002-7603-5635</orcidid><orcidid>https://orcid.org/0000-0003-4087-0273</orcidid><orcidid>https://orcid.org/0000-0002-0188-3090</orcidid><orcidid>https://orcid.org/0000-0002-6175-5883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2022-03, Vol.24 (6), p.2409-2422
issn 1463-9262
1463-9270
language eng
recordid cdi_proquest_journals_2640975924
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Alginates
Alginic acid
Biomedical materials
Chemical modification
Chitosan
Complexation
Crosslinking
Enzymes
Green chemistry
Hydrogels
Loss modulus
Mechanical properties
Microfibers
Moldability
Phenols
Polyelectrolytes
Polymers
Three dimensional printing
title Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20complexation%20of%20phenol%20functionalized%20polymer%20induced%20in%20situ%20microfiber%20formation%20for%203D%20printing%20of%20marine-based%20hydrogels&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Jafari,%20Hafez&rft.date=2022-03-21&rft.volume=24&rft.issue=6&rft.spage=2409&rft.epage=2422&rft.pages=2409-2422&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/D1GC04347A&rft_dat=%3Cproquest_cross%3E2640975924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640975924&rft_id=info:pmid/&rfr_iscdi=true