KL-Dection: An Approach to Detect Network Outages Based on Key Links
Monitoring the states of network links is essential to detect network outages and improve Internet reliability. Currently, existing work detects network outages by monitoring all the links, which requires thousands of probes and large-scale measurements, resulting in high resource occupancy and cost...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-03, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Kuang, Ye Li, Dandan Huang, Xiaohong |
description | Monitoring the states of network links is essential to detect network outages and improve Internet reliability. Currently, existing work detects network outages by monitoring all the links, which requires thousands of probes and large-scale measurements, resulting in high resource occupancy and cost. To solve this problem, this paper proposes the KL-Dection approach, which detects network outages via key links instead of all links. Firstly, we recognize the key links based on flow density, degree centrality, and probe-distance centrality. Next, based on the recognized key links, we give the critical value of their Round-Trip Time (RTT). Then, we detect the network outages by observing whether the RTT of the key link exceeds the critical value. Finally, we leverage two historical events to evaluate our approach, and the results demonstrate that our approach can detect the network outages effectively by only monitoring less than 0.06% of the links in detection area. |
doi_str_mv | 10.1155/2022/5099508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640852787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640852787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-eaae46ac2d857050e0d39b33b3cbb9d8a7de61de0b2b02eb8740fbe9d86a0963</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYje_AFNPOrKbLvdtt4Q8CNs5MK9aXcHWdBdbEsI_94lEI-eZpL3yTuTh5DbFB7TVIgBA8YGArQWoM5ILxUcEpVLef635_qSXIWwAgAOLO2R8bRIxljGum2e6LChw83Gt7Zc0tjSMcYuoR8Yd61f09k22k8M9NkGrGjb0CnuaVE363BNLhb2K-DNafbJ_GUyH70lxez1fTQskpLpLCZoLWa5LVmlhAQBCBXXjnPHS-d0paysME8rBMccMHRKZrBw2CW5BZ3zPrk71nYv_mwxRLNqt77pLhqWZ6AEk0p21MORKn0bgseF2fj62_q9ScEcNJmDJnPS1OH3R3xZN5Xd1f_Tv0cbZX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640852787</pqid></control><display><type>article</type><title>KL-Dection: An Approach to Detect Network Outages Based on Key Links</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Kuang, Ye ; Li, Dandan ; Huang, Xiaohong</creator><contributor>Rani, Shalli ; Shalli Rani</contributor><creatorcontrib>Kuang, Ye ; Li, Dandan ; Huang, Xiaohong ; Rani, Shalli ; Shalli Rani</creatorcontrib><description>Monitoring the states of network links is essential to detect network outages and improve Internet reliability. Currently, existing work detects network outages by monitoring all the links, which requires thousands of probes and large-scale measurements, resulting in high resource occupancy and cost. To solve this problem, this paper proposes the KL-Dection approach, which detects network outages via key links instead of all links. Firstly, we recognize the key links based on flow density, degree centrality, and probe-distance centrality. Next, based on the recognized key links, we give the critical value of their Round-Trip Time (RTT). Then, we detect the network outages by observing whether the RTT of the key link exceeds the critical value. Finally, we leverage two historical events to evaluate our approach, and the results demonstrate that our approach can detect the network outages effectively by only monitoring less than 0.06% of the links in detection area.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/5099508</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Connectivity ; Internet access ; Links ; Monitoring ; Network reliability ; Normal distribution ; Occupancy ; Outages</subject><ispartof>Wireless communications and mobile computing, 2022-03, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Ye Kuang et al.</rights><rights>Copyright © 2022 Ye Kuang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-eaae46ac2d857050e0d39b33b3cbb9d8a7de61de0b2b02eb8740fbe9d86a0963</cites><orcidid>0000-0002-7275-2274 ; 0000-0003-0953-743X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><contributor>Rani, Shalli</contributor><contributor>Shalli Rani</contributor><creatorcontrib>Kuang, Ye</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Huang, Xiaohong</creatorcontrib><title>KL-Dection: An Approach to Detect Network Outages Based on Key Links</title><title>Wireless communications and mobile computing</title><description>Monitoring the states of network links is essential to detect network outages and improve Internet reliability. Currently, existing work detects network outages by monitoring all the links, which requires thousands of probes and large-scale measurements, resulting in high resource occupancy and cost. To solve this problem, this paper proposes the KL-Dection approach, which detects network outages via key links instead of all links. Firstly, we recognize the key links based on flow density, degree centrality, and probe-distance centrality. Next, based on the recognized key links, we give the critical value of their Round-Trip Time (RTT). Then, we detect the network outages by observing whether the RTT of the key link exceeds the critical value. Finally, we leverage two historical events to evaluate our approach, and the results demonstrate that our approach can detect the network outages effectively by only monitoring less than 0.06% of the links in detection area.</description><subject>Algorithms</subject><subject>Connectivity</subject><subject>Internet access</subject><subject>Links</subject><subject>Monitoring</subject><subject>Network reliability</subject><subject>Normal distribution</subject><subject>Occupancy</subject><subject>Outages</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAjEQhhujiYje_AFNPOrKbLvdtt4Q8CNs5MK9aXcHWdBdbEsI_94lEI-eZpL3yTuTh5DbFB7TVIgBA8YGArQWoM5ILxUcEpVLef635_qSXIWwAgAOLO2R8bRIxljGum2e6LChw83Gt7Zc0tjSMcYuoR8Yd61f09k22k8M9NkGrGjb0CnuaVE363BNLhb2K-DNafbJ_GUyH70lxez1fTQskpLpLCZoLWa5LVmlhAQBCBXXjnPHS-d0paysME8rBMccMHRKZrBw2CW5BZ3zPrk71nYv_mwxRLNqt77pLhqWZ6AEk0p21MORKn0bgseF2fj62_q9ScEcNJmDJnPS1OH3R3xZN5Xd1f_Tv0cbZX4</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Kuang, Ye</creator><creator>Li, Dandan</creator><creator>Huang, Xiaohong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7275-2274</orcidid><orcidid>https://orcid.org/0000-0003-0953-743X</orcidid></search><sort><creationdate>20220307</creationdate><title>KL-Dection: An Approach to Detect Network Outages Based on Key Links</title><author>Kuang, Ye ; Li, Dandan ; Huang, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-eaae46ac2d857050e0d39b33b3cbb9d8a7de61de0b2b02eb8740fbe9d86a0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Connectivity</topic><topic>Internet access</topic><topic>Links</topic><topic>Monitoring</topic><topic>Network reliability</topic><topic>Normal distribution</topic><topic>Occupancy</topic><topic>Outages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Ye</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Huang, Xiaohong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Ye</au><au>Li, Dandan</au><au>Huang, Xiaohong</au><au>Rani, Shalli</au><au>Shalli Rani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KL-Dection: An Approach to Detect Network Outages Based on Key Links</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-03-07</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Monitoring the states of network links is essential to detect network outages and improve Internet reliability. Currently, existing work detects network outages by monitoring all the links, which requires thousands of probes and large-scale measurements, resulting in high resource occupancy and cost. To solve this problem, this paper proposes the KL-Dection approach, which detects network outages via key links instead of all links. Firstly, we recognize the key links based on flow density, degree centrality, and probe-distance centrality. Next, based on the recognized key links, we give the critical value of their Round-Trip Time (RTT). Then, we detect the network outages by observing whether the RTT of the key link exceeds the critical value. Finally, we leverage two historical events to evaluate our approach, and the results demonstrate that our approach can detect the network outages effectively by only monitoring less than 0.06% of the links in detection area.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/5099508</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7275-2274</orcidid><orcidid>https://orcid.org/0000-0003-0953-743X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-03, Vol.2022, p.1-11 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2640852787 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Algorithms Connectivity Internet access Links Monitoring Network reliability Normal distribution Occupancy Outages |
title | KL-Dection: An Approach to Detect Network Outages Based on Key Links |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KL-Dection:%20An%20Approach%20to%20Detect%20Network%20Outages%20Based%20on%20Key%20Links&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Kuang,%20Ye&rft.date=2022-03-07&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/5099508&rft_dat=%3Cproquest_cross%3E2640852787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640852787&rft_id=info:pmid/&rfr_iscdi=true |