Eulerian–Lagrangian CFD-microphysics modeling of a near-field contrail from a realistic turbofan

Aircraft contrails contribute to climate change through global radiative forcing. As part of the general effort aimed at developing reliable decision-making tools, this paper demonstrates the feasibility of implementing a Lagrangian ice microphysical module in a commercial CFD code to characterize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engine research 2022-04, Vol.23 (4), p.661-677, Article 1468087421993961
Hauptverfasser: Cantin, Sébastien, Chouak, Mohamed, Morency, François, Garnier, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aircraft contrails contribute to climate change through global radiative forcing. As part of the general effort aimed at developing reliable decision-making tools, this paper demonstrates the feasibility of implementing a Lagrangian ice microphysical module in a commercial CFD code to characterize the early development of near-field contrails. While engine jets are highly parameterized in most existing models in a way that neglects the nozzle exit-related aspects, our model accounts for the geometric complexity of modern turbofan exhausts. The modeling strategy is based on three-dimensional URANS simulations of an aircraft nozzle exit involving a bypass and a core jet (Eulerian gas phase). Solid soot and ice particles (dispersed phase) are individually tracked using a Lagrangian approach. The implemented microphysical module accounts for the main process of water-vapor condensation on pre-activated soot particles known as heterogeneous condensation. The predictive capabilities of the proposed model are demonstrated through a comprehensive validation set based on the jet-flow dynamics and turbulence statistics in the case of compressible, turbulent coaxial jets. Simulations of contrail formation from a realistic nozzle-exit geometry of the CFM56-3 engine (short-cowl nozzle delivering a dual stream jet with a bypass rate of 5.3) were also carried out in typical cruise flight conditions ensuring contrail formation. The model provides reliable predictions in terms of the plume dilution and ice-particle properties as compared to available in-flight and numerical data. Such a model can then be used to characterize the impact of nozzle-exit parameters on the optical and microphysical properties of near-field contrails.
ISSN:1468-0874
2041-3149
DOI:10.1177/1468087421993961