Diamond-germanium composite films grown by microwave plasma CVD
We report on novel microcrystalline diamond-germanium composite films grown by microwave plasma-assisted chemical vapor deposition in CH4–H2-GeH4 mixtures on Si substrate. The structure of the films, characterized with scanning electron microscopy, X-ray diffraction, Raman and photoluminescence spec...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2022-04, Vol.190, p.10-21 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 10 |
container_title | Carbon (New York) |
container_volume | 190 |
creator | Ralchenko, Victor Sedov, Vadim Martyanov, Artem Voronov, Valery Savin, Sergey Khomich, Andrey Shevchenko, Mikhail Bolshakov, Andrey |
description | We report on novel microcrystalline diamond-germanium composite films grown by microwave plasma-assisted chemical vapor deposition in CH4–H2-GeH4 mixtures on Si substrate. The structure of the films, characterized with scanning electron microscopy, X-ray diffraction, Raman and photoluminescence spectroscopy, is found to strongly depend on the deposition temperature: the Ge grains compete with diamond crystallites upon growth at 750–800 °C, but vanish at higher temperatures of 850–950 °C due to enhanced growth rate of diamond matrix. The Ge grains nucleated on the (100) oriented Si wafer at 800 °C are in an epitaxial relationship with the substrate, while Si–Ge alloy forms at intermediate temperatures 850–900 °C. As both components are transparent in the infrared spectrum, the composite shows certain optical transmission for wavelengths λ > 10 μm. The films revealed a bright optical emission of GeV color centers at 601 nm wavelength due to diamond doping with Ge. From the calculation of the effective coefficient of thermal expansion for the diamond-Ge composites, we show that it can be tuned to be close to that for SiC or Si single crystals by appropriate choice of the Ge volume fraction in the composite, facilitating the integration of the semiconductor wafers with the diamond-based film.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2022.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640586305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622322000033</els_id><sourcerecordid>2640586305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-98162e6db626f946439602e2327448d33e6af92939e64619d1524e52f14c425d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU7wK268AaHylCqxAbaW60wqR3Uc7LSof4-rsGY1M9K9d2YOQteUlJRQeduV1sR16EtGGCsJLQnhJ2hG6wUveK3oKZoRQupCMsbP0UVKXR5FTcUM3T8640PfFBuI3vRu57ENfgjJjYBbt_UJb2L46fH6gL2zuTV7wMPWJG_w8uvxEp21Zpvg6q_O0efz08fytVi9v7wtH1aF5VyMhaqpZCCbtWSyVUIKriRhwDhbCFE3nIM0rWKKK5BCUtXQigmoWEuFFaxq-BzdTLlDDN87SKPuwi72eaVmUpCqlpxUWSUmVT40pQitHqLzJh40JfqISnd6QqWPqDShOqPKtrvJBvmDvYOok3XQW2hcBDvqJrj_A34Bh3xxbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640586305</pqid></control><display><type>article</type><title>Diamond-germanium composite films grown by microwave plasma CVD</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ralchenko, Victor ; Sedov, Vadim ; Martyanov, Artem ; Voronov, Valery ; Savin, Sergey ; Khomich, Andrey ; Shevchenko, Mikhail ; Bolshakov, Andrey</creator><creatorcontrib>Ralchenko, Victor ; Sedov, Vadim ; Martyanov, Artem ; Voronov, Valery ; Savin, Sergey ; Khomich, Andrey ; Shevchenko, Mikhail ; Bolshakov, Andrey</creatorcontrib><description>We report on novel microcrystalline diamond-germanium composite films grown by microwave plasma-assisted chemical vapor deposition in CH4–H2-GeH4 mixtures on Si substrate. The structure of the films, characterized with scanning electron microscopy, X-ray diffraction, Raman and photoluminescence spectroscopy, is found to strongly depend on the deposition temperature: the Ge grains compete with diamond crystallites upon growth at 750–800 °C, but vanish at higher temperatures of 850–950 °C due to enhanced growth rate of diamond matrix. The Ge grains nucleated on the (100) oriented Si wafer at 800 °C are in an epitaxial relationship with the substrate, while Si–Ge alloy forms at intermediate temperatures 850–900 °C. As both components are transparent in the infrared spectrum, the composite shows certain optical transmission for wavelengths λ > 10 μm. The films revealed a bright optical emission of GeV color centers at 601 nm wavelength due to diamond doping with Ge. From the calculation of the effective coefficient of thermal expansion for the diamond-Ge composites, we show that it can be tuned to be close to that for SiC or Si single crystals by appropriate choice of the Ge volume fraction in the composite, facilitating the integration of the semiconductor wafers with the diamond-based film.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2022.01.003</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Chemical vapor deposition ; Color centers ; Composite ; Composite materials ; Crystallites ; CVD ; Diamond films ; Diamonds ; Germanium ; GeV color Center ; Grains ; Infrared radiation ; Microwave heating ; Microwave plasmas ; Photoluminescence ; Plasma physics ; Polycrystalline diamond ; Silicon substrates ; Single crystals ; Thermal expansion ; Thermal expansion coefficient ; Thin films</subject><ispartof>Carbon (New York), 2022-04, Vol.190, p.10-21</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 30, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-98162e6db626f946439602e2327448d33e6af92939e64619d1524e52f14c425d3</citedby><cites>FETCH-LOGICAL-c334t-98162e6db626f946439602e2327448d33e6af92939e64619d1524e52f14c425d3</cites><orcidid>0000-0002-3196-5695 ; 0000-0001-9500-9646 ; 0000-0001-9802-1106 ; 0000-0002-9190-5766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2022.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Ralchenko, Victor</creatorcontrib><creatorcontrib>Sedov, Vadim</creatorcontrib><creatorcontrib>Martyanov, Artem</creatorcontrib><creatorcontrib>Voronov, Valery</creatorcontrib><creatorcontrib>Savin, Sergey</creatorcontrib><creatorcontrib>Khomich, Andrey</creatorcontrib><creatorcontrib>Shevchenko, Mikhail</creatorcontrib><creatorcontrib>Bolshakov, Andrey</creatorcontrib><title>Diamond-germanium composite films grown by microwave plasma CVD</title><title>Carbon (New York)</title><description>We report on novel microcrystalline diamond-germanium composite films grown by microwave plasma-assisted chemical vapor deposition in CH4–H2-GeH4 mixtures on Si substrate. The structure of the films, characterized with scanning electron microscopy, X-ray diffraction, Raman and photoluminescence spectroscopy, is found to strongly depend on the deposition temperature: the Ge grains compete with diamond crystallites upon growth at 750–800 °C, but vanish at higher temperatures of 850–950 °C due to enhanced growth rate of diamond matrix. The Ge grains nucleated on the (100) oriented Si wafer at 800 °C are in an epitaxial relationship with the substrate, while Si–Ge alloy forms at intermediate temperatures 850–900 °C. As both components are transparent in the infrared spectrum, the composite shows certain optical transmission for wavelengths λ > 10 μm. The films revealed a bright optical emission of GeV color centers at 601 nm wavelength due to diamond doping with Ge. From the calculation of the effective coefficient of thermal expansion for the diamond-Ge composites, we show that it can be tuned to be close to that for SiC or Si single crystals by appropriate choice of the Ge volume fraction in the composite, facilitating the integration of the semiconductor wafers with the diamond-based film.
[Display omitted]</description><subject>Chemical vapor deposition</subject><subject>Color centers</subject><subject>Composite</subject><subject>Composite materials</subject><subject>Crystallites</subject><subject>CVD</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Germanium</subject><subject>GeV color Center</subject><subject>Grains</subject><subject>Infrared radiation</subject><subject>Microwave heating</subject><subject>Microwave plasmas</subject><subject>Photoluminescence</subject><subject>Plasma physics</subject><subject>Polycrystalline diamond</subject><subject>Silicon substrates</subject><subject>Single crystals</subject><subject>Thermal expansion</subject><subject>Thermal expansion coefficient</subject><subject>Thin films</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU7wK268AaHylCqxAbaW60wqR3Uc7LSof4-rsGY1M9K9d2YOQteUlJRQeduV1sR16EtGGCsJLQnhJ2hG6wUveK3oKZoRQupCMsbP0UVKXR5FTcUM3T8640PfFBuI3vRu57ENfgjJjYBbt_UJb2L46fH6gL2zuTV7wMPWJG_w8uvxEp21Zpvg6q_O0efz08fytVi9v7wtH1aF5VyMhaqpZCCbtWSyVUIKriRhwDhbCFE3nIM0rWKKK5BCUtXQigmoWEuFFaxq-BzdTLlDDN87SKPuwi72eaVmUpCqlpxUWSUmVT40pQitHqLzJh40JfqISnd6QqWPqDShOqPKtrvJBvmDvYOok3XQW2hcBDvqJrj_A34Bh3xxbA</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Ralchenko, Victor</creator><creator>Sedov, Vadim</creator><creator>Martyanov, Artem</creator><creator>Voronov, Valery</creator><creator>Savin, Sergey</creator><creator>Khomich, Andrey</creator><creator>Shevchenko, Mikhail</creator><creator>Bolshakov, Andrey</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3196-5695</orcidid><orcidid>https://orcid.org/0000-0001-9500-9646</orcidid><orcidid>https://orcid.org/0000-0001-9802-1106</orcidid><orcidid>https://orcid.org/0000-0002-9190-5766</orcidid></search><sort><creationdate>20220430</creationdate><title>Diamond-germanium composite films grown by microwave plasma CVD</title><author>Ralchenko, Victor ; Sedov, Vadim ; Martyanov, Artem ; Voronov, Valery ; Savin, Sergey ; Khomich, Andrey ; Shevchenko, Mikhail ; Bolshakov, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-98162e6db626f946439602e2327448d33e6af92939e64619d1524e52f14c425d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical vapor deposition</topic><topic>Color centers</topic><topic>Composite</topic><topic>Composite materials</topic><topic>Crystallites</topic><topic>CVD</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Germanium</topic><topic>GeV color Center</topic><topic>Grains</topic><topic>Infrared radiation</topic><topic>Microwave heating</topic><topic>Microwave plasmas</topic><topic>Photoluminescence</topic><topic>Plasma physics</topic><topic>Polycrystalline diamond</topic><topic>Silicon substrates</topic><topic>Single crystals</topic><topic>Thermal expansion</topic><topic>Thermal expansion coefficient</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ralchenko, Victor</creatorcontrib><creatorcontrib>Sedov, Vadim</creatorcontrib><creatorcontrib>Martyanov, Artem</creatorcontrib><creatorcontrib>Voronov, Valery</creatorcontrib><creatorcontrib>Savin, Sergey</creatorcontrib><creatorcontrib>Khomich, Andrey</creatorcontrib><creatorcontrib>Shevchenko, Mikhail</creatorcontrib><creatorcontrib>Bolshakov, Andrey</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ralchenko, Victor</au><au>Sedov, Vadim</au><au>Martyanov, Artem</au><au>Voronov, Valery</au><au>Savin, Sergey</au><au>Khomich, Andrey</au><au>Shevchenko, Mikhail</au><au>Bolshakov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamond-germanium composite films grown by microwave plasma CVD</atitle><jtitle>Carbon (New York)</jtitle><date>2022-04-30</date><risdate>2022</risdate><volume>190</volume><spage>10</spage><epage>21</epage><pages>10-21</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>We report on novel microcrystalline diamond-germanium composite films grown by microwave plasma-assisted chemical vapor deposition in CH4–H2-GeH4 mixtures on Si substrate. The structure of the films, characterized with scanning electron microscopy, X-ray diffraction, Raman and photoluminescence spectroscopy, is found to strongly depend on the deposition temperature: the Ge grains compete with diamond crystallites upon growth at 750–800 °C, but vanish at higher temperatures of 850–950 °C due to enhanced growth rate of diamond matrix. The Ge grains nucleated on the (100) oriented Si wafer at 800 °C are in an epitaxial relationship with the substrate, while Si–Ge alloy forms at intermediate temperatures 850–900 °C. As both components are transparent in the infrared spectrum, the composite shows certain optical transmission for wavelengths λ > 10 μm. The films revealed a bright optical emission of GeV color centers at 601 nm wavelength due to diamond doping with Ge. From the calculation of the effective coefficient of thermal expansion for the diamond-Ge composites, we show that it can be tuned to be close to that for SiC or Si single crystals by appropriate choice of the Ge volume fraction in the composite, facilitating the integration of the semiconductor wafers with the diamond-based film.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2022.01.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3196-5695</orcidid><orcidid>https://orcid.org/0000-0001-9500-9646</orcidid><orcidid>https://orcid.org/0000-0001-9802-1106</orcidid><orcidid>https://orcid.org/0000-0002-9190-5766</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2022-04, Vol.190, p.10-21 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2640586305 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Chemical vapor deposition Color centers Composite Composite materials Crystallites CVD Diamond films Diamonds Germanium GeV color Center Grains Infrared radiation Microwave heating Microwave plasmas Photoluminescence Plasma physics Polycrystalline diamond Silicon substrates Single crystals Thermal expansion Thermal expansion coefficient Thin films |
title | Diamond-germanium composite films grown by microwave plasma CVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamond-germanium%20composite%20films%20grown%20by%20microwave%20plasma%20CVD&rft.jtitle=Carbon%20(New%20York)&rft.au=Ralchenko,%20Victor&rft.date=2022-04-30&rft.volume=190&rft.spage=10&rft.epage=21&rft.pages=10-21&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2022.01.003&rft_dat=%3Cproquest_cross%3E2640586305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640586305&rft_id=info:pmid/&rft_els_id=S0008622322000033&rfr_iscdi=true |