Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy
To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approa...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2022-04, Vol.78 (5), p.6090-6120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6120 |
---|---|
container_issue | 5 |
container_start_page | 6090 |
container_title | The Journal of supercomputing |
container_volume | 78 |
creator | Li, Maodong Xu, Guanghui Fu, Bo Zhao, Xilin |
description | To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum. |
doi_str_mv | 10.1007/s11227-021-04116-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640583324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640583324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6-q9ebTNUgZfMOBCxWVI07STYfow6QjjrzdawZ2ry71859zDIeQC4QoBiuuIyFiRAcMMBGKeyQOyQFnwtJbikCxAMchKKdgxOYlxAwCCF3xBnt_WZuvoME6-859m8kNPzbYdgp_WHa1MdDVNp3rfm85bOvp-PSTed6b1fUtNX1NTm6T-cDROwUyu3Z-Ro8Zsozv_nafk9e72ZfmQrZ7uH5c3q8xyVFPWVHlplVRGOZ7ymMo4Z1XVYA1Q5yx3uWC8ka7EqrBWNEw6pWxeoFASARt-Si5n3zEM7zsXJ70ZdqFPLzXLBciScyYSxWbKhiHG4Bo9hhQ_7DWC_i5Pz-XpVJ7-KU_LJOKzKCa4b134s_5H9QVgJXKa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640583324</pqid></control><display><type>article</type><title>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Maodong ; Xu, Guanghui ; Fu, Bo ; Zhao, Xilin</creator><creatorcontrib>Li, Maodong ; Xu, Guanghui ; Fu, Bo ; Zhao, Xilin</creatorcontrib><description>To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-021-04116-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Convergence ; Exploitation ; Imaging ; Interpreters ; Mutation ; Optimization ; Optimization algorithms ; Pinholes ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2022-04, Vol.78 (5), p.6090-6120</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</citedby><cites>FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</cites><orcidid>0000-0003-3154-0037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-021-04116-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-021-04116-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Zhao, Xilin</creatorcontrib><title>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Exploitation</subject><subject>Imaging</subject><subject>Interpreters</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Pinholes</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6-q9ebTNUgZfMOBCxWVI07STYfow6QjjrzdawZ2ry71859zDIeQC4QoBiuuIyFiRAcMMBGKeyQOyQFnwtJbikCxAMchKKdgxOYlxAwCCF3xBnt_WZuvoME6-859m8kNPzbYdgp_WHa1MdDVNp3rfm85bOvp-PSTed6b1fUtNX1NTm6T-cDROwUyu3Z-Ro8Zsozv_nafk9e72ZfmQrZ7uH5c3q8xyVFPWVHlplVRGOZ7ymMo4Z1XVYA1Q5yx3uWC8ka7EqrBWNEw6pWxeoFASARt-Si5n3zEM7zsXJ70ZdqFPLzXLBciScyYSxWbKhiHG4Bo9hhQ_7DWC_i5Pz-XpVJ7-KU_LJOKzKCa4b134s_5H9QVgJXKa</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Li, Maodong</creator><creator>Xu, Guanghui</creator><creator>Fu, Bo</creator><creator>Zhao, Xilin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3154-0037</orcidid></search><sort><creationdate>20220401</creationdate><title>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</title><author>Li, Maodong ; Xu, Guanghui ; Fu, Bo ; Zhao, Xilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Exploitation</topic><topic>Imaging</topic><topic>Interpreters</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Pinholes</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Zhao, Xilin</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Maodong</au><au>Xu, Guanghui</au><au>Fu, Bo</au><au>Zhao, Xilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>78</volume><issue>5</issue><spage>6090</spage><epage>6120</epage><pages>6090-6120</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-021-04116-5</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-3154-0037</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2022-04, Vol.78 (5), p.6090-6120 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2640583324 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Compilers Computer Science Convergence Exploitation Imaging Interpreters Mutation Optimization Optimization algorithms Pinholes Processor Architectures Programming Languages |
title | Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whale%20optimization%20algorithm%20based%20on%20dynamic%20pinhole%20imaging%20and%20adaptive%20strategy&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Li,%20Maodong&rft.date=2022-04-01&rft.volume=78&rft.issue=5&rft.spage=6090&rft.epage=6120&rft.pages=6090-6120&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-021-04116-5&rft_dat=%3Cproquest_cross%3E2640583324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640583324&rft_id=info:pmid/&rfr_iscdi=true |