Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy

To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2022-04, Vol.78 (5), p.6090-6120
Hauptverfasser: Li, Maodong, Xu, Guanghui, Fu, Bo, Zhao, Xilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6120
container_issue 5
container_start_page 6090
container_title The Journal of supercomputing
container_volume 78
creator Li, Maodong
Xu, Guanghui
Fu, Bo
Zhao, Xilin
description To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum.
doi_str_mv 10.1007/s11227-021-04116-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640583324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640583324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6-q9ebTNUgZfMOBCxWVI07STYfow6QjjrzdawZ2ry71859zDIeQC4QoBiuuIyFiRAcMMBGKeyQOyQFnwtJbikCxAMchKKdgxOYlxAwCCF3xBnt_WZuvoME6-859m8kNPzbYdgp_WHa1MdDVNp3rfm85bOvp-PSTed6b1fUtNX1NTm6T-cDROwUyu3Z-Ro8Zsozv_nafk9e72ZfmQrZ7uH5c3q8xyVFPWVHlplVRGOZ7ymMo4Z1XVYA1Q5yx3uWC8ka7EqrBWNEw6pWxeoFASARt-Si5n3zEM7zsXJ70ZdqFPLzXLBciScyYSxWbKhiHG4Bo9hhQ_7DWC_i5Pz-XpVJ7-KU_LJOKzKCa4b134s_5H9QVgJXKa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640583324</pqid></control><display><type>article</type><title>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Maodong ; Xu, Guanghui ; Fu, Bo ; Zhao, Xilin</creator><creatorcontrib>Li, Maodong ; Xu, Guanghui ; Fu, Bo ; Zhao, Xilin</creatorcontrib><description>To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-021-04116-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Convergence ; Exploitation ; Imaging ; Interpreters ; Mutation ; Optimization ; Optimization algorithms ; Pinholes ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2022-04, Vol.78 (5), p.6090-6120</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</citedby><cites>FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</cites><orcidid>0000-0003-3154-0037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-021-04116-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-021-04116-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Zhao, Xilin</creatorcontrib><title>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Exploitation</subject><subject>Imaging</subject><subject>Interpreters</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Pinholes</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6-q9ebTNUgZfMOBCxWVI07STYfow6QjjrzdawZ2ry71859zDIeQC4QoBiuuIyFiRAcMMBGKeyQOyQFnwtJbikCxAMchKKdgxOYlxAwCCF3xBnt_WZuvoME6-859m8kNPzbYdgp_WHa1MdDVNp3rfm85bOvp-PSTed6b1fUtNX1NTm6T-cDROwUyu3Z-Ro8Zsozv_nafk9e72ZfmQrZ7uH5c3q8xyVFPWVHlplVRGOZ7ymMo4Z1XVYA1Q5yx3uWC8ka7EqrBWNEw6pWxeoFASARt-Si5n3zEM7zsXJ70ZdqFPLzXLBciScyYSxWbKhiHG4Bo9hhQ_7DWC_i5Pz-XpVJ7-KU_LJOKzKCa4b134s_5H9QVgJXKa</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Li, Maodong</creator><creator>Xu, Guanghui</creator><creator>Fu, Bo</creator><creator>Zhao, Xilin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3154-0037</orcidid></search><sort><creationdate>20220401</creationdate><title>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</title><author>Li, Maodong ; Xu, Guanghui ; Fu, Bo ; Zhao, Xilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fb68c959a9e3000abaeec9bf1d00d626e6423f5e81b7cc4f25e99c671495101f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Exploitation</topic><topic>Imaging</topic><topic>Interpreters</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Pinholes</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Maodong</creatorcontrib><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Zhao, Xilin</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Maodong</au><au>Xu, Guanghui</au><au>Fu, Bo</au><au>Zhao, Xilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>78</volume><issue>5</issue><spage>6090</spage><epage>6120</epage><pages>6090-6120</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>To solve the problems of premature convergence and easily falling into local optimum, a whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy is proposed in this paper. In the exploitation phase, the dynamic pinhole imaging strategy allows the whale population to approach the optimal solution faster, thereby accelerating the convergence speed of the algorithm. In the exploration phase, adaptive inertial weights based on dynamic boundaries and dimensions can enrich the diversity of the population and balance the algorithm’s exploitation and exploration capabilities. The local mutation mechanism can adjust the search range of the algorithm dynamically. The improved algorithm has been extensively tested in 20 well-known benchmark functions and four complex constrained engineering optimization problems, and compared with the ones of other improved algorithms presented in literatures. The test results show that the improved algorithm has faster convergence speed and higher convergence accuracy and can effectively jump out of the local optimum.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-021-04116-5</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-3154-0037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022-04, Vol.78 (5), p.6090-6120
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2640583324
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Compilers
Computer Science
Convergence
Exploitation
Imaging
Interpreters
Mutation
Optimization
Optimization algorithms
Pinholes
Processor Architectures
Programming Languages
title Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whale%20optimization%20algorithm%20based%20on%20dynamic%20pinhole%20imaging%20and%20adaptive%20strategy&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Li,%20Maodong&rft.date=2022-04-01&rft.volume=78&rft.issue=5&rft.spage=6090&rft.epage=6120&rft.pages=6090-6120&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-021-04116-5&rft_dat=%3Cproquest_cross%3E2640583324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640583324&rft_id=info:pmid/&rfr_iscdi=true