Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers

Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co ( t Co )/Pd (0.9 nm)] 8 multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with t Co in the range 0.07 nm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022-03, Vol.57 (11), p.6212-6222
Hauptverfasser: Pan, Santanu, Ganss, Fabian, Panda, Suryanarayan, Sellge, Gabriel, Banerjee, Chandrima, Sinha, Jaivardhan, Hellwig, Olav, Barman, Anjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6222
container_issue 11
container_start_page 6212
container_title Journal of materials science
container_volume 57
creator Pan, Santanu
Ganss, Fabian
Panda, Suryanarayan
Sellge, Gabriel
Banerjee, Chandrima
Sinha, Jaivardhan
Hellwig, Olav
Barman, Anjan
description Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co ( t Co )/Pd (0.9 nm)] 8 multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with t Co in the range 0.07 nm ≤  t Co  ≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices.
doi_str_mv 10.1007/s10853-022-07016-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2640563298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697427577</galeid><sourcerecordid>A697427577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpINNJ_kBWhq6ycHr1tpdD6CMwpZDHWsj2laPgx0SSoZNfX6UOlGyKFldwvnOlwyHkgsIVBdBfIoVK8hIYK0EDVeXxA9lQqXkpKuAfyQZeJSYUPSWfYnwCAKkZ3ZD-J7aPdvJxLGZXOBzTHLGdp64YbMRQ-KlbWuyKZUjBOhtT0eFo-wmTf7HJz1MmVjE95pvzw1i86W0xZsEP9oghnpETZ4eI529zSx6-fb2__lHuf32_ud7ty5bXLJWdQt4JKbW1VecYo6C01k2tBGNc28opLpwG1zAqm8o2vAUQglVNzWgnEfiWfF73HsL8vGBM5mlewpSfNEwJkIqzusrU1Ur1dkDjJzfnAG0-OZzP6THnQLNTtRZMS62z4fKdITMJf6feLjGam7vb9yxb2TbMMQZ05hD8aMPRUDCvbZm1LZMrMX_bMsds4qspZnjqMfz7939cfwDR45hd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640563298</pqid></control><display><type>article</type><title>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</title><source>SpringerLink</source><creator>Pan, Santanu ; Ganss, Fabian ; Panda, Suryanarayan ; Sellge, Gabriel ; Banerjee, Chandrima ; Sinha, Jaivardhan ; Hellwig, Olav ; Barman, Anjan</creator><creatorcontrib>Pan, Santanu ; Ganss, Fabian ; Panda, Suryanarayan ; Sellge, Gabriel ; Banerjee, Chandrima ; Sinha, Jaivardhan ; Hellwig, Olav ; Barman, Anjan</creatorcontrib><description>Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co ( t Co )/Pd (0.9 nm)] 8 multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with t Co in the range 0.07 nm ≤  t Co  ≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07016-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composites &amp; Nanocomposites ; Crystallography and Scattering Methods ; Curie temperature ; Decay ; Demagnetization ; Dielectric films ; Electron spin ; Ferromagnetic films ; Ferromagnetic materials ; Ferromagnetism ; Magnetism ; Materials Science ; Multilayers ; Palladium ; Polymer Sciences ; Solid Mechanics ; Thin films</subject><ispartof>Journal of materials science, 2022-03, Vol.57 (11), p.6212-6222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</citedby><cites>FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</cites><orcidid>0000-0002-4106-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07016-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07016-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Pan, Santanu</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Panda, Suryanarayan</creatorcontrib><creatorcontrib>Sellge, Gabriel</creatorcontrib><creatorcontrib>Banerjee, Chandrima</creatorcontrib><creatorcontrib>Sinha, Jaivardhan</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Barman, Anjan</creatorcontrib><title>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co ( t Co )/Pd (0.9 nm)] 8 multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with t Co in the range 0.07 nm ≤  t Co  ≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices.</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composites &amp; Nanocomposites</subject><subject>Crystallography and Scattering Methods</subject><subject>Curie temperature</subject><subject>Decay</subject><subject>Demagnetization</subject><subject>Dielectric films</subject><subject>Electron spin</subject><subject>Ferromagnetic films</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetism</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Palladium</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtr3DAUhUVpINNJ_kBWhq6ycHr1tpdD6CMwpZDHWsj2laPgx0SSoZNfX6UOlGyKFldwvnOlwyHkgsIVBdBfIoVK8hIYK0EDVeXxA9lQqXkpKuAfyQZeJSYUPSWfYnwCAKkZ3ZD-J7aPdvJxLGZXOBzTHLGdp64YbMRQ-KlbWuyKZUjBOhtT0eFo-wmTf7HJz1MmVjE95pvzw1i86W0xZsEP9oghnpETZ4eI529zSx6-fb2__lHuf32_ud7ty5bXLJWdQt4JKbW1VecYo6C01k2tBGNc28opLpwG1zAqm8o2vAUQglVNzWgnEfiWfF73HsL8vGBM5mlewpSfNEwJkIqzusrU1Ur1dkDjJzfnAG0-OZzP6THnQLNTtRZMS62z4fKdITMJf6feLjGam7vb9yxb2TbMMQZ05hD8aMPRUDCvbZm1LZMrMX_bMsds4qspZnjqMfz7939cfwDR45hd</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Pan, Santanu</creator><creator>Ganss, Fabian</creator><creator>Panda, Suryanarayan</creator><creator>Sellge, Gabriel</creator><creator>Banerjee, Chandrima</creator><creator>Sinha, Jaivardhan</creator><creator>Hellwig, Olav</creator><creator>Barman, Anjan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4106-5658</orcidid></search><sort><creationdate>20220301</creationdate><title>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</title><author>Pan, Santanu ; Ganss, Fabian ; Panda, Suryanarayan ; Sellge, Gabriel ; Banerjee, Chandrima ; Sinha, Jaivardhan ; Hellwig, Olav ; Barman, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composites &amp; Nanocomposites</topic><topic>Crystallography and Scattering Methods</topic><topic>Curie temperature</topic><topic>Decay</topic><topic>Demagnetization</topic><topic>Dielectric films</topic><topic>Electron spin</topic><topic>Ferromagnetic films</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetism</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Palladium</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Santanu</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Panda, Suryanarayan</creatorcontrib><creatorcontrib>Sellge, Gabriel</creatorcontrib><creatorcontrib>Banerjee, Chandrima</creatorcontrib><creatorcontrib>Sinha, Jaivardhan</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Barman, Anjan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Santanu</au><au>Ganss, Fabian</au><au>Panda, Suryanarayan</au><au>Sellge, Gabriel</au><au>Banerjee, Chandrima</au><au>Sinha, Jaivardhan</au><au>Hellwig, Olav</au><au>Barman, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>57</volume><issue>11</issue><spage>6212</spage><epage>6222</epage><pages>6212-6222</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co ( t Co )/Pd (0.9 nm)] 8 multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with t Co in the range 0.07 nm ≤  t Co  ≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07016-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4106-5658</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022-03, Vol.57 (11), p.6212-6222
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2640563298
source SpringerLink
subjects Analysis
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Composites & Nanocomposites
Crystallography and Scattering Methods
Curie temperature
Decay
Demagnetization
Dielectric films
Electron spin
Ferromagnetic films
Ferromagnetic materials
Ferromagnetism
Magnetism
Materials Science
Multilayers
Palladium
Polymer Sciences
Solid Mechanics
Thin films
title Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20femtosecond%20laser%20induced%20ultrafast%20demagnetization%20in%20ultrathin%20film%20magnetic%20multilayers&rft.jtitle=Journal%20of%20materials%20science&rft.au=Pan,%20Santanu&rft.date=2022-03-01&rft.volume=57&rft.issue=11&rft.spage=6212&rft.epage=6222&rft.pages=6212-6222&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07016-y&rft_dat=%3Cgale_proqu%3EA697427577%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640563298&rft_id=info:pmid/&rft_galeid=A697427577&rfr_iscdi=true