Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers
Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co ( t Co )/Pd (0.9 nm)] 8 multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with t Co in the range 0.07 nm...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022-03, Vol.57 (11), p.6212-6222 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6222 |
---|---|
container_issue | 11 |
container_start_page | 6212 |
container_title | Journal of materials science |
container_volume | 57 |
creator | Pan, Santanu Ganss, Fabian Panda, Suryanarayan Sellge, Gabriel Banerjee, Chandrima Sinha, Jaivardhan Hellwig, Olav Barman, Anjan |
description | Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co (
t
Co
)/Pd (0.9 nm)]
8
multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with
t
Co
in the range 0.07 nm ≤
t
Co
≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices. |
doi_str_mv | 10.1007/s10853-022-07016-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2640563298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697427577</galeid><sourcerecordid>A697427577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpINNJ_kBWhq6ycHr1tpdD6CMwpZDHWsj2laPgx0SSoZNfX6UOlGyKFldwvnOlwyHkgsIVBdBfIoVK8hIYK0EDVeXxA9lQqXkpKuAfyQZeJSYUPSWfYnwCAKkZ3ZD-J7aPdvJxLGZXOBzTHLGdp64YbMRQ-KlbWuyKZUjBOhtT0eFo-wmTf7HJz1MmVjE95pvzw1i86W0xZsEP9oghnpETZ4eI529zSx6-fb2__lHuf32_ud7ty5bXLJWdQt4JKbW1VecYo6C01k2tBGNc28opLpwG1zAqm8o2vAUQglVNzWgnEfiWfF73HsL8vGBM5mlewpSfNEwJkIqzusrU1Ur1dkDjJzfnAG0-OZzP6THnQLNTtRZMS62z4fKdITMJf6feLjGam7vb9yxb2TbMMQZ05hD8aMPRUDCvbZm1LZMrMX_bMsds4qspZnjqMfz7939cfwDR45hd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640563298</pqid></control><display><type>article</type><title>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</title><source>SpringerLink</source><creator>Pan, Santanu ; Ganss, Fabian ; Panda, Suryanarayan ; Sellge, Gabriel ; Banerjee, Chandrima ; Sinha, Jaivardhan ; Hellwig, Olav ; Barman, Anjan</creator><creatorcontrib>Pan, Santanu ; Ganss, Fabian ; Panda, Suryanarayan ; Sellge, Gabriel ; Banerjee, Chandrima ; Sinha, Jaivardhan ; Hellwig, Olav ; Barman, Anjan</creatorcontrib><description>Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co (
t
Co
)/Pd (0.9 nm)]
8
multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with
t
Co
in the range 0.07 nm ≤
t
Co
≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07016-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composites & Nanocomposites ; Crystallography and Scattering Methods ; Curie temperature ; Decay ; Demagnetization ; Dielectric films ; Electron spin ; Ferromagnetic films ; Ferromagnetic materials ; Ferromagnetism ; Magnetism ; Materials Science ; Multilayers ; Palladium ; Polymer Sciences ; Solid Mechanics ; Thin films</subject><ispartof>Journal of materials science, 2022-03, Vol.57 (11), p.6212-6222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</citedby><cites>FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</cites><orcidid>0000-0002-4106-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07016-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07016-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Pan, Santanu</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Panda, Suryanarayan</creatorcontrib><creatorcontrib>Sellge, Gabriel</creatorcontrib><creatorcontrib>Banerjee, Chandrima</creatorcontrib><creatorcontrib>Sinha, Jaivardhan</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Barman, Anjan</creatorcontrib><title>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co (
t
Co
)/Pd (0.9 nm)]
8
multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with
t
Co
in the range 0.07 nm ≤
t
Co
≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices.</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composites & Nanocomposites</subject><subject>Crystallography and Scattering Methods</subject><subject>Curie temperature</subject><subject>Decay</subject><subject>Demagnetization</subject><subject>Dielectric films</subject><subject>Electron spin</subject><subject>Ferromagnetic films</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetism</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Palladium</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtr3DAUhUVpINNJ_kBWhq6ycHr1tpdD6CMwpZDHWsj2laPgx0SSoZNfX6UOlGyKFldwvnOlwyHkgsIVBdBfIoVK8hIYK0EDVeXxA9lQqXkpKuAfyQZeJSYUPSWfYnwCAKkZ3ZD-J7aPdvJxLGZXOBzTHLGdp64YbMRQ-KlbWuyKZUjBOhtT0eFo-wmTf7HJz1MmVjE95pvzw1i86W0xZsEP9oghnpETZ4eI529zSx6-fb2__lHuf32_ud7ty5bXLJWdQt4JKbW1VecYo6C01k2tBGNc28opLpwG1zAqm8o2vAUQglVNzWgnEfiWfF73HsL8vGBM5mlewpSfNEwJkIqzusrU1Ur1dkDjJzfnAG0-OZzP6THnQLNTtRZMS62z4fKdITMJf6feLjGam7vb9yxb2TbMMQZ05hD8aMPRUDCvbZm1LZMrMX_bMsds4qspZnjqMfz7939cfwDR45hd</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Pan, Santanu</creator><creator>Ganss, Fabian</creator><creator>Panda, Suryanarayan</creator><creator>Sellge, Gabriel</creator><creator>Banerjee, Chandrima</creator><creator>Sinha, Jaivardhan</creator><creator>Hellwig, Olav</creator><creator>Barman, Anjan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4106-5658</orcidid></search><sort><creationdate>20220301</creationdate><title>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</title><author>Pan, Santanu ; Ganss, Fabian ; Panda, Suryanarayan ; Sellge, Gabriel ; Banerjee, Chandrima ; Sinha, Jaivardhan ; Hellwig, Olav ; Barman, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d6e3d4557aa8df22106777b9642237a8f634f70fb215b8ab3c004428b921d5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composites & Nanocomposites</topic><topic>Crystallography and Scattering Methods</topic><topic>Curie temperature</topic><topic>Decay</topic><topic>Demagnetization</topic><topic>Dielectric films</topic><topic>Electron spin</topic><topic>Ferromagnetic films</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetism</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Palladium</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Santanu</creatorcontrib><creatorcontrib>Ganss, Fabian</creatorcontrib><creatorcontrib>Panda, Suryanarayan</creatorcontrib><creatorcontrib>Sellge, Gabriel</creatorcontrib><creatorcontrib>Banerjee, Chandrima</creatorcontrib><creatorcontrib>Sinha, Jaivardhan</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Barman, Anjan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Santanu</au><au>Ganss, Fabian</au><au>Panda, Suryanarayan</au><au>Sellge, Gabriel</au><au>Banerjee, Chandrima</au><au>Sinha, Jaivardhan</au><au>Hellwig, Olav</au><au>Barman, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>57</volume><issue>11</issue><spage>6212</spage><epage>6222</epage><pages>6212-6222</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ever since its discovery ultrafast demagnetization has remained one of the most intriguing research areas in magnetism. Here, we demonstrate that in [Co (
t
Co
)/Pd (0.9 nm)]
8
multilayers, the characteristic decay time in femtosecond timescale varies non-monotonically with
t
Co
in the range 0.07 nm ≤
t
Co
≤ 0.75 nm. Further investigation reveals higher spin fluctuation at higher ratio of electron to Curie temperature to be responsible for this. Microscopic three-temperature modelling unravels a similar trend in the spin–lattice interaction strength, which strongly supports our experimental observation. The knowledge of the femtosecond magnetization decay mechanism in ultrathin ferromagnetic films is unique and important for the advancement of fundamental magnetism besides their potential applications in ultrahigh speed spintronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07016-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4106-5658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022-03, Vol.57 (11), p.6212-6222 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2640563298 |
source | SpringerLink |
subjects | Analysis Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composites & Nanocomposites Crystallography and Scattering Methods Curie temperature Decay Demagnetization Dielectric films Electron spin Ferromagnetic films Ferromagnetic materials Ferromagnetism Magnetism Materials Science Multilayers Palladium Polymer Sciences Solid Mechanics Thin films |
title | Mechanism of femtosecond laser induced ultrafast demagnetization in ultrathin film magnetic multilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20femtosecond%20laser%20induced%20ultrafast%20demagnetization%20in%20ultrathin%20film%20magnetic%20multilayers&rft.jtitle=Journal%20of%20materials%20science&rft.au=Pan,%20Santanu&rft.date=2022-03-01&rft.volume=57&rft.issue=11&rft.spage=6212&rft.epage=6222&rft.pages=6212-6222&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07016-y&rft_dat=%3Cgale_proqu%3EA697427577%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640563298&rft_id=info:pmid/&rft_galeid=A697427577&rfr_iscdi=true |