The energy of some tree dendrimers

The concept of energy of a graph was first introduced by I. Gutman [ 5 ] in 1978. The energy E ( G ) of a simple graph G is defined to be the sum of the absolute values of the eigenvalues of G . The tree dendrimer d ( n ,  k ) is a finite connected cycle free graph, also known as Bethe lattice. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2022-04, Vol.68 (2), p.1033-1045
Hauptverfasser: Bokhary, Syed Ahtsham Ul Haq, Tabassum, Hafsah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1045
container_issue 2
container_start_page 1033
container_title Journal of applied mathematics & computing
container_volume 68
creator Bokhary, Syed Ahtsham Ul Haq
Tabassum, Hafsah
description The concept of energy of a graph was first introduced by I. Gutman [ 5 ] in 1978. The energy E ( G ) of a simple graph G is defined to be the sum of the absolute values of the eigenvalues of G . The tree dendrimer d ( n ,  k ) is a finite connected cycle free graph, also known as Bethe lattice. The each vertex in d ( n ,  k ) is connected to ( k - 1 ) . It is a rooted tree, with all other vertices arranged in shells around the root vertex, also called the central vertex. In this paper, the reduction formula for the characteristic polynomial of d (2,  k ) and d (3,  k ) is obtained. By using these reduction formulas, the energy of these graphs is also calculated. The comparison of energy for different values of n and k is also given.
doi_str_mv 10.1007/s12190-021-01531-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640559796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640559796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fbd730434525c29450ff3e56eaeb420a937a3bf3be655a561e7dfe7b5cb7f69e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOi5-gk2UmaoxT_QcFLPYdkd1Itdrcm28N-e6MrePM0w_Dem8ePsUsBNwLA3GYhhQUOUnAQqAQfj9hMLDRyCQs8LjvaBcdyOGVnOW8BtLFgZ-xq_UYVdZQ2Y9XHKvc7qoZEVLXUtel9Rymfs5PoPzJd_M45e324Xy-f-Orl8Xl5t-KNEnbgMbRGQa1qlNhIWyPEqAg1eQq1BG-V8SpEFUgjetSCTBvJBGyCidqSmrPrKXef-s8D5cFt-0PqyksndQ2I1lhdVHJSNanPOVF0-1LTp9EJcN8s3MTCFRbuh4Ubi0lNplzE3YbSX_Q_ri_AvWDV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640559796</pqid></control><display><type>article</type><title>The energy of some tree dendrimers</title><source>Springer Nature - Complete Springer Journals</source><creator>Bokhary, Syed Ahtsham Ul Haq ; Tabassum, Hafsah</creator><creatorcontrib>Bokhary, Syed Ahtsham Ul Haq ; Tabassum, Hafsah</creatorcontrib><description>The concept of energy of a graph was first introduced by I. Gutman [ 5 ] in 1978. The energy E ( G ) of a simple graph G is defined to be the sum of the absolute values of the eigenvalues of G . The tree dendrimer d ( n ,  k ) is a finite connected cycle free graph, also known as Bethe lattice. The each vertex in d ( n ,  k ) is connected to ( k - 1 ) . It is a rooted tree, with all other vertices arranged in shells around the root vertex, also called the central vertex. In this paper, the reduction formula for the characteristic polynomial of d (2,  k ) and d (3,  k ) is obtained. By using these reduction formulas, the energy of these graphs is also calculated. The comparison of energy for different values of n and k is also given.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-021-01531-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apexes ; Applied mathematics ; Computational Mathematics and Numerical Analysis ; Dendrimers ; Eigenvalues ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Original Research ; Polynomials ; Reduction ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2022-04, Vol.68 (2), p.1033-1045</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2021</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fbd730434525c29450ff3e56eaeb420a937a3bf3be655a561e7dfe7b5cb7f69e3</citedby><cites>FETCH-LOGICAL-c319t-fbd730434525c29450ff3e56eaeb420a937a3bf3be655a561e7dfe7b5cb7f69e3</cites><orcidid>0000-0002-8957-0792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-021-01531-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-021-01531-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bokhary, Syed Ahtsham Ul Haq</creatorcontrib><creatorcontrib>Tabassum, Hafsah</creatorcontrib><title>The energy of some tree dendrimers</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>The concept of energy of a graph was first introduced by I. Gutman [ 5 ] in 1978. The energy E ( G ) of a simple graph G is defined to be the sum of the absolute values of the eigenvalues of G . The tree dendrimer d ( n ,  k ) is a finite connected cycle free graph, also known as Bethe lattice. The each vertex in d ( n ,  k ) is connected to ( k - 1 ) . It is a rooted tree, with all other vertices arranged in shells around the root vertex, also called the central vertex. In this paper, the reduction formula for the characteristic polynomial of d (2,  k ) and d (3,  k ) is obtained. By using these reduction formulas, the energy of these graphs is also calculated. The comparison of energy for different values of n and k is also given.</description><subject>Apexes</subject><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dendrimers</subject><subject>Eigenvalues</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Original Research</subject><subject>Polynomials</subject><subject>Reduction</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOi5-gk2UmaoxT_QcFLPYdkd1Itdrcm28N-e6MrePM0w_Dem8ePsUsBNwLA3GYhhQUOUnAQqAQfj9hMLDRyCQs8LjvaBcdyOGVnOW8BtLFgZ-xq_UYVdZQ2Y9XHKvc7qoZEVLXUtel9Rymfs5PoPzJd_M45e324Xy-f-Orl8Xl5t-KNEnbgMbRGQa1qlNhIWyPEqAg1eQq1BG-V8SpEFUgjetSCTBvJBGyCidqSmrPrKXef-s8D5cFt-0PqyksndQ2I1lhdVHJSNanPOVF0-1LTp9EJcN8s3MTCFRbuh4Ubi0lNplzE3YbSX_Q_ri_AvWDV</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Bokhary, Syed Ahtsham Ul Haq</creator><creator>Tabassum, Hafsah</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8957-0792</orcidid></search><sort><creationdate>20220401</creationdate><title>The energy of some tree dendrimers</title><author>Bokhary, Syed Ahtsham Ul Haq ; Tabassum, Hafsah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fbd730434525c29450ff3e56eaeb420a937a3bf3be655a561e7dfe7b5cb7f69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dendrimers</topic><topic>Eigenvalues</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Original Research</topic><topic>Polynomials</topic><topic>Reduction</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokhary, Syed Ahtsham Ul Haq</creatorcontrib><creatorcontrib>Tabassum, Hafsah</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokhary, Syed Ahtsham Ul Haq</au><au>Tabassum, Hafsah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The energy of some tree dendrimers</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>68</volume><issue>2</issue><spage>1033</spage><epage>1045</epage><pages>1033-1045</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>The concept of energy of a graph was first introduced by I. Gutman [ 5 ] in 1978. The energy E ( G ) of a simple graph G is defined to be the sum of the absolute values of the eigenvalues of G . The tree dendrimer d ( n ,  k ) is a finite connected cycle free graph, also known as Bethe lattice. The each vertex in d ( n ,  k ) is connected to ( k - 1 ) . It is a rooted tree, with all other vertices arranged in shells around the root vertex, also called the central vertex. In this paper, the reduction formula for the characteristic polynomial of d (2,  k ) and d (3,  k ) is obtained. By using these reduction formulas, the energy of these graphs is also calculated. The comparison of energy for different values of n and k is also given.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-021-01531-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8957-0792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2022-04, Vol.68 (2), p.1033-1045
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2640559796
source Springer Nature - Complete Springer Journals
subjects Apexes
Applied mathematics
Computational Mathematics and Numerical Analysis
Dendrimers
Eigenvalues
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Original Research
Polynomials
Reduction
Theory of Computation
title The energy of some tree dendrimers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20energy%20of%20some%20tree%20dendrimers&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Bokhary,%20Syed%20Ahtsham%20Ul%20Haq&rft.date=2022-04-01&rft.volume=68&rft.issue=2&rft.spage=1033&rft.epage=1045&rft.pages=1033-1045&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-021-01531-y&rft_dat=%3Cproquest_cross%3E2640559796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640559796&rft_id=info:pmid/&rfr_iscdi=true