Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity

Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2022-03, Vol.10 (6), p.n/a
Hauptverfasser: Wu, Yue‐Yue, Liu, Lan, Zou, Jia‐Hao, Liu, Ju‐Qing, Hu, Yi‐Chun, Ban, Chao‐Yi, Li, Fei‐Yang, Li, Zi‐Fan, Zhang, He‐Shan, Zhou, Zhe, Zhao, Jian‐Feng, Xiu, Fei, Huang, Xiao, Zhao, Qiang, Eginligil, Mustafa, Huang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced optical materials
container_volume 10
creator Wu, Yue‐Yue
Liu, Lan
Zou, Jia‐Hao
Liu, Ju‐Qing
Hu, Yi‐Chun
Ban, Chao‐Yi
Li, Fei‐Yang
Li, Zi‐Fan
Zhang, He‐Shan
Zhou, Zhe
Zhao, Jian‐Feng
Xiu, Fei
Huang, Xiao
Zhao, Qiang
Eginligil, Mustafa
Huang, Wei
description Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology. Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity.
doi_str_mv 10.1002/adom.202102323
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640476788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640476788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</originalsourceid><addsrcrecordid>eNqFUD1PwzAQtRBIVKUrsyXmFJ9dJ_FYhU-ppR1gtlzbaV2lcbFTlfDrSRUEbEx37_Q-Tg-hayBjIITeKuN3Y0ooEMooO0MDCoInQDI4_7NfolGMW0JIB5iYZAOkC1-Xrnb1GhcqrPxHW7lPa3pQ4xdV--awsrj0AS83Pu43Ptioba0tnpaNDevKH_HRNRu82DdOqwrP7c6HFi8rFbuDa9ordFGqKtrR9xyit4f71-IpmS0en4vpLNEMMpZwo4Bbk6rusVRxlmnNjWEgNBBFrRUwAQAqUpozZlYZz1IihC5zyg0jgrMhuul998G_H2xs5NYfQt1FSppOSOea5XnHGvcsHXyMwZZyH9xOhVYCkacu5alL-dNlJxC94Ogq2_7DltO7xfxX-wXUGngg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640476788</pqid></control><display><type>article</type><title>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</title><source>Wiley Online Library All Journals</source><creator>Wu, Yue‐Yue ; Liu, Lan ; Zou, Jia‐Hao ; Liu, Ju‐Qing ; Hu, Yi‐Chun ; Ban, Chao‐Yi ; Li, Fei‐Yang ; Li, Zi‐Fan ; Zhang, He‐Shan ; Zhou, Zhe ; Zhao, Jian‐Feng ; Xiu, Fei ; Huang, Xiao ; Zhao, Qiang ; Eginligil, Mustafa ; Huang, Wei</creator><creatorcontrib>Wu, Yue‐Yue ; Liu, Lan ; Zou, Jia‐Hao ; Liu, Ju‐Qing ; Hu, Yi‐Chun ; Ban, Chao‐Yi ; Li, Fei‐Yang ; Li, Zi‐Fan ; Zhang, He‐Shan ; Zhou, Zhe ; Zhao, Jian‐Feng ; Xiu, Fei ; Huang, Xiao ; Zhao, Qiang ; Eginligil, Mustafa ; Huang, Wei</creatorcontrib><description>Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology. Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202102323</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Brain ; Carbon nanotubes ; covalent and hydrogen bonds ; dynamic memory ; Hybrid structures ; Hydrogen bonds ; Materials science ; Nanomaterials ; Optical memory (data storage) ; optical memory plasticity ; Optics ; Optoelectronics ; Phosphorescence ; phosphorescence afterglow ; Plastic properties</subject><ispartof>Advanced optical materials, 2022-03, Vol.10 (6), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</citedby><cites>FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</cites><orcidid>0000-0002-6499-2796 ; 0000-0002-0581-7824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202102323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202102323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Yue‐Yue</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Zou, Jia‐Hao</creatorcontrib><creatorcontrib>Liu, Ju‐Qing</creatorcontrib><creatorcontrib>Hu, Yi‐Chun</creatorcontrib><creatorcontrib>Ban, Chao‐Yi</creatorcontrib><creatorcontrib>Li, Fei‐Yang</creatorcontrib><creatorcontrib>Li, Zi‐Fan</creatorcontrib><creatorcontrib>Zhang, He‐Shan</creatorcontrib><creatorcontrib>Zhou, Zhe</creatorcontrib><creatorcontrib>Zhao, Jian‐Feng</creatorcontrib><creatorcontrib>Xiu, Fei</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Eginligil, Mustafa</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</title><title>Advanced optical materials</title><description>Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology. Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity.</description><subject>Brain</subject><subject>Carbon nanotubes</subject><subject>covalent and hydrogen bonds</subject><subject>dynamic memory</subject><subject>Hybrid structures</subject><subject>Hydrogen bonds</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Optical memory (data storage)</subject><subject>optical memory plasticity</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Phosphorescence</subject><subject>phosphorescence afterglow</subject><subject>Plastic properties</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAQtRBIVKUrsyXmFJ9dJ_FYhU-ppR1gtlzbaV2lcbFTlfDrSRUEbEx37_Q-Tg-hayBjIITeKuN3Y0ooEMooO0MDCoInQDI4_7NfolGMW0JIB5iYZAOkC1-Xrnb1GhcqrPxHW7lPa3pQ4xdV--awsrj0AS83Pu43Ptioba0tnpaNDevKH_HRNRu82DdOqwrP7c6HFi8rFbuDa9ordFGqKtrR9xyit4f71-IpmS0en4vpLNEMMpZwo4Bbk6rusVRxlmnNjWEgNBBFrRUwAQAqUpozZlYZz1IihC5zyg0jgrMhuul998G_H2xs5NYfQt1FSppOSOea5XnHGvcsHXyMwZZyH9xOhVYCkacu5alL-dNlJxC94Ogq2_7DltO7xfxX-wXUGngg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wu, Yue‐Yue</creator><creator>Liu, Lan</creator><creator>Zou, Jia‐Hao</creator><creator>Liu, Ju‐Qing</creator><creator>Hu, Yi‐Chun</creator><creator>Ban, Chao‐Yi</creator><creator>Li, Fei‐Yang</creator><creator>Li, Zi‐Fan</creator><creator>Zhang, He‐Shan</creator><creator>Zhou, Zhe</creator><creator>Zhao, Jian‐Feng</creator><creator>Xiu, Fei</creator><creator>Huang, Xiao</creator><creator>Zhao, Qiang</creator><creator>Eginligil, Mustafa</creator><creator>Huang, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6499-2796</orcidid><orcidid>https://orcid.org/0000-0002-0581-7824</orcidid></search><sort><creationdate>20220301</creationdate><title>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</title><author>Wu, Yue‐Yue ; Liu, Lan ; Zou, Jia‐Hao ; Liu, Ju‐Qing ; Hu, Yi‐Chun ; Ban, Chao‐Yi ; Li, Fei‐Yang ; Li, Zi‐Fan ; Zhang, He‐Shan ; Zhou, Zhe ; Zhao, Jian‐Feng ; Xiu, Fei ; Huang, Xiao ; Zhao, Qiang ; Eginligil, Mustafa ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain</topic><topic>Carbon nanotubes</topic><topic>covalent and hydrogen bonds</topic><topic>dynamic memory</topic><topic>Hybrid structures</topic><topic>Hydrogen bonds</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Optical memory (data storage)</topic><topic>optical memory plasticity</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Phosphorescence</topic><topic>phosphorescence afterglow</topic><topic>Plastic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yue‐Yue</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Zou, Jia‐Hao</creatorcontrib><creatorcontrib>Liu, Ju‐Qing</creatorcontrib><creatorcontrib>Hu, Yi‐Chun</creatorcontrib><creatorcontrib>Ban, Chao‐Yi</creatorcontrib><creatorcontrib>Li, Fei‐Yang</creatorcontrib><creatorcontrib>Li, Zi‐Fan</creatorcontrib><creatorcontrib>Zhang, He‐Shan</creatorcontrib><creatorcontrib>Zhou, Zhe</creatorcontrib><creatorcontrib>Zhao, Jian‐Feng</creatorcontrib><creatorcontrib>Xiu, Fei</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Eginligil, Mustafa</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yue‐Yue</au><au>Liu, Lan</au><au>Zou, Jia‐Hao</au><au>Liu, Ju‐Qing</au><au>Hu, Yi‐Chun</au><au>Ban, Chao‐Yi</au><au>Li, Fei‐Yang</au><au>Li, Zi‐Fan</au><au>Zhang, He‐Shan</au><au>Zhou, Zhe</au><au>Zhao, Jian‐Feng</au><au>Xiu, Fei</au><au>Huang, Xiao</au><au>Zhao, Qiang</au><au>Eginligil, Mustafa</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</atitle><jtitle>Advanced optical materials</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>10</volume><issue>6</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology. Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202102323</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6499-2796</orcidid><orcidid>https://orcid.org/0000-0002-0581-7824</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2022-03, Vol.10 (6), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2640476788
source Wiley Online Library All Journals
subjects Brain
Carbon nanotubes
covalent and hydrogen bonds
dynamic memory
Hybrid structures
Hydrogen bonds
Materials science
Nanomaterials
Optical memory (data storage)
optical memory plasticity
Optics
Optoelectronics
Phosphorescence
phosphorescence afterglow
Plastic properties
title Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confining%20Carboxylized%20Carbon%20Nanotube%20for%20Phosphorescence%20Afterglow%20with%20Optical%20Memory%20Plasticity&rft.jtitle=Advanced%20optical%20materials&rft.au=Wu,%20Yue%E2%80%90Yue&rft.date=2022-03-01&rft.volume=10&rft.issue=6&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202102323&rft_dat=%3Cproquest_cross%3E2640476788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640476788&rft_id=info:pmid/&rfr_iscdi=true