Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity
Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigid...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2022-03, Vol.10 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 10 |
creator | Wu, Yue‐Yue Liu, Lan Zou, Jia‐Hao Liu, Ju‐Qing Hu, Yi‐Chun Ban, Chao‐Yi Li, Fei‐Yang Li, Zi‐Fan Zhang, He‐Shan Zhou, Zhe Zhao, Jian‐Feng Xiu, Fei Huang, Xiao Zhao, Qiang Eginligil, Mustafa Huang, Wei |
description | Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology.
Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity. |
doi_str_mv | 10.1002/adom.202102323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640476788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640476788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</originalsourceid><addsrcrecordid>eNqFUD1PwzAQtRBIVKUrsyXmFJ9dJ_FYhU-ppR1gtlzbaV2lcbFTlfDrSRUEbEx37_Q-Tg-hayBjIITeKuN3Y0ooEMooO0MDCoInQDI4_7NfolGMW0JIB5iYZAOkC1-Xrnb1GhcqrPxHW7lPa3pQ4xdV--awsrj0AS83Pu43Ptioba0tnpaNDevKH_HRNRu82DdOqwrP7c6HFi8rFbuDa9ordFGqKtrR9xyit4f71-IpmS0en4vpLNEMMpZwo4Bbk6rusVRxlmnNjWEgNBBFrRUwAQAqUpozZlYZz1IihC5zyg0jgrMhuul998G_H2xs5NYfQt1FSppOSOea5XnHGvcsHXyMwZZyH9xOhVYCkacu5alL-dNlJxC94Ogq2_7DltO7xfxX-wXUGngg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640476788</pqid></control><display><type>article</type><title>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</title><source>Wiley Online Library All Journals</source><creator>Wu, Yue‐Yue ; Liu, Lan ; Zou, Jia‐Hao ; Liu, Ju‐Qing ; Hu, Yi‐Chun ; Ban, Chao‐Yi ; Li, Fei‐Yang ; Li, Zi‐Fan ; Zhang, He‐Shan ; Zhou, Zhe ; Zhao, Jian‐Feng ; Xiu, Fei ; Huang, Xiao ; Zhao, Qiang ; Eginligil, Mustafa ; Huang, Wei</creator><creatorcontrib>Wu, Yue‐Yue ; Liu, Lan ; Zou, Jia‐Hao ; Liu, Ju‐Qing ; Hu, Yi‐Chun ; Ban, Chao‐Yi ; Li, Fei‐Yang ; Li, Zi‐Fan ; Zhang, He‐Shan ; Zhou, Zhe ; Zhao, Jian‐Feng ; Xiu, Fei ; Huang, Xiao ; Zhao, Qiang ; Eginligil, Mustafa ; Huang, Wei</creatorcontrib><description>Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology.
Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202102323</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Brain ; Carbon nanotubes ; covalent and hydrogen bonds ; dynamic memory ; Hybrid structures ; Hydrogen bonds ; Materials science ; Nanomaterials ; Optical memory (data storage) ; optical memory plasticity ; Optics ; Optoelectronics ; Phosphorescence ; phosphorescence afterglow ; Plastic properties</subject><ispartof>Advanced optical materials, 2022-03, Vol.10 (6), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</citedby><cites>FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</cites><orcidid>0000-0002-6499-2796 ; 0000-0002-0581-7824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202102323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202102323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Yue‐Yue</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Zou, Jia‐Hao</creatorcontrib><creatorcontrib>Liu, Ju‐Qing</creatorcontrib><creatorcontrib>Hu, Yi‐Chun</creatorcontrib><creatorcontrib>Ban, Chao‐Yi</creatorcontrib><creatorcontrib>Li, Fei‐Yang</creatorcontrib><creatorcontrib>Li, Zi‐Fan</creatorcontrib><creatorcontrib>Zhang, He‐Shan</creatorcontrib><creatorcontrib>Zhou, Zhe</creatorcontrib><creatorcontrib>Zhao, Jian‐Feng</creatorcontrib><creatorcontrib>Xiu, Fei</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Eginligil, Mustafa</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</title><title>Advanced optical materials</title><description>Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology.
Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity.</description><subject>Brain</subject><subject>Carbon nanotubes</subject><subject>covalent and hydrogen bonds</subject><subject>dynamic memory</subject><subject>Hybrid structures</subject><subject>Hydrogen bonds</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Optical memory (data storage)</subject><subject>optical memory plasticity</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Phosphorescence</subject><subject>phosphorescence afterglow</subject><subject>Plastic properties</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAQtRBIVKUrsyXmFJ9dJ_FYhU-ppR1gtlzbaV2lcbFTlfDrSRUEbEx37_Q-Tg-hayBjIITeKuN3Y0ooEMooO0MDCoInQDI4_7NfolGMW0JIB5iYZAOkC1-Xrnb1GhcqrPxHW7lPa3pQ4xdV--awsrj0AS83Pu43Ptioba0tnpaNDevKH_HRNRu82DdOqwrP7c6HFi8rFbuDa9ordFGqKtrR9xyit4f71-IpmS0en4vpLNEMMpZwo4Bbk6rusVRxlmnNjWEgNBBFrRUwAQAqUpozZlYZz1IihC5zyg0jgrMhuul998G_H2xs5NYfQt1FSppOSOea5XnHGvcsHXyMwZZyH9xOhVYCkacu5alL-dNlJxC94Ogq2_7DltO7xfxX-wXUGngg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wu, Yue‐Yue</creator><creator>Liu, Lan</creator><creator>Zou, Jia‐Hao</creator><creator>Liu, Ju‐Qing</creator><creator>Hu, Yi‐Chun</creator><creator>Ban, Chao‐Yi</creator><creator>Li, Fei‐Yang</creator><creator>Li, Zi‐Fan</creator><creator>Zhang, He‐Shan</creator><creator>Zhou, Zhe</creator><creator>Zhao, Jian‐Feng</creator><creator>Xiu, Fei</creator><creator>Huang, Xiao</creator><creator>Zhao, Qiang</creator><creator>Eginligil, Mustafa</creator><creator>Huang, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6499-2796</orcidid><orcidid>https://orcid.org/0000-0002-0581-7824</orcidid></search><sort><creationdate>20220301</creationdate><title>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</title><author>Wu, Yue‐Yue ; Liu, Lan ; Zou, Jia‐Hao ; Liu, Ju‐Qing ; Hu, Yi‐Chun ; Ban, Chao‐Yi ; Li, Fei‐Yang ; Li, Zi‐Fan ; Zhang, He‐Shan ; Zhou, Zhe ; Zhao, Jian‐Feng ; Xiu, Fei ; Huang, Xiao ; Zhao, Qiang ; Eginligil, Mustafa ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-5da15ed6a9476a537cc5dd319c10a2ee9141112962833db7576099cf825d30953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain</topic><topic>Carbon nanotubes</topic><topic>covalent and hydrogen bonds</topic><topic>dynamic memory</topic><topic>Hybrid structures</topic><topic>Hydrogen bonds</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Optical memory (data storage)</topic><topic>optical memory plasticity</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Phosphorescence</topic><topic>phosphorescence afterglow</topic><topic>Plastic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yue‐Yue</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Zou, Jia‐Hao</creatorcontrib><creatorcontrib>Liu, Ju‐Qing</creatorcontrib><creatorcontrib>Hu, Yi‐Chun</creatorcontrib><creatorcontrib>Ban, Chao‐Yi</creatorcontrib><creatorcontrib>Li, Fei‐Yang</creatorcontrib><creatorcontrib>Li, Zi‐Fan</creatorcontrib><creatorcontrib>Zhang, He‐Shan</creatorcontrib><creatorcontrib>Zhou, Zhe</creatorcontrib><creatorcontrib>Zhao, Jian‐Feng</creatorcontrib><creatorcontrib>Xiu, Fei</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Eginligil, Mustafa</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yue‐Yue</au><au>Liu, Lan</au><au>Zou, Jia‐Hao</au><au>Liu, Ju‐Qing</au><au>Hu, Yi‐Chun</au><au>Ban, Chao‐Yi</au><au>Li, Fei‐Yang</au><au>Li, Zi‐Fan</au><au>Zhang, He‐Shan</au><au>Zhou, Zhe</au><au>Zhao, Jian‐Feng</au><au>Xiu, Fei</au><au>Huang, Xiao</au><au>Zhao, Qiang</au><au>Eginligil, Mustafa</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity</atitle><jtitle>Advanced optical materials</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>10</volume><issue>6</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Afterglow materials are of primary interest in optoelectronics and bioelectronics. Here, a long‐lived phosphorescence afterglow is reported from carboxylated carbon nanotubes (c‐CNTs) confined within boron oxynitride (BNO). The formation of covalent and hydrogen bonds in c‐CNT@BNO enhances the rigidity of the hybrid structure and alleviates the non‐radiative deactivation of excited triplet states, leading to room‐temperature phosphorescence (RTP). The afterglow material exhibits an ultra‐long RTP lifetime of up to 476.6 ms, with an afterglow time of 4.0 s, distinguishable by naked eyes. This unprecedented feature makes c‐CNT act like a light‐sensitive neuron and it is possible to achieve memorizing−forgetting behavior in the form of optical memory plasticity, owing to photons’ capture‐and‐slow‐release process. In analogy to the biological brain, both memory strength and forgetting time are proportional to learning exercise, including the intensity and time of irradiation training. The study provides an effective protocol for the synthesis of afterglow nanomaterials, extending their application to brain‐like intelligent technology.
Confining carboxylized carbon nanotube (c‐CNT) with covalent CO and hydrogen bonds produces long‐lived room‐temperature phosphorescence emission, with a lifetime of 476.6 ms and an afterglow time of 4.0 s. This afterglow behavior enables c‐CNT as a visual neuron to emulate the dynamic memorizing and forgetting process, with the capability of typically optical memory plasticity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202102323</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6499-2796</orcidid><orcidid>https://orcid.org/0000-0002-0581-7824</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2022-03, Vol.10 (6), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2640476788 |
source | Wiley Online Library All Journals |
subjects | Brain Carbon nanotubes covalent and hydrogen bonds dynamic memory Hybrid structures Hydrogen bonds Materials science Nanomaterials Optical memory (data storage) optical memory plasticity Optics Optoelectronics Phosphorescence phosphorescence afterglow Plastic properties |
title | Confining Carboxylized Carbon Nanotube for Phosphorescence Afterglow with Optical Memory Plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confining%20Carboxylized%20Carbon%20Nanotube%20for%20Phosphorescence%20Afterglow%20with%20Optical%20Memory%20Plasticity&rft.jtitle=Advanced%20optical%20materials&rft.au=Wu,%20Yue%E2%80%90Yue&rft.date=2022-03-01&rft.volume=10&rft.issue=6&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202102323&rft_dat=%3Cproquest_cross%3E2640476788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640476788&rft_id=info:pmid/&rfr_iscdi=true |