Locality-Based Encoder and Model Quantization for Efficient Hyper-Dimensional Computing
Brain-inspired hyper-dimensional (HD) computing is a new computing paradigm emulating the neuron's activity in high-dimensional space. The first step in HD computing is to map each data point into high-dimensional space (e.g., 10 000), which requires the computation of thousands of operations f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2022-04, Vol.41 (4), p.897-907 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 907 |
---|---|
container_issue | 4 |
container_start_page | 897 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 41 |
creator | Morris, Justin Fernando, Roshan Hao, Yilun Imani, Mohsen Aksanli, Baris Rosing, Tajana |
description | Brain-inspired hyper-dimensional (HD) computing is a new computing paradigm emulating the neuron's activity in high-dimensional space. The first step in HD computing is to map each data point into high-dimensional space (e.g., 10 000), which requires the computation of thousands of operations for each element of data in the original domain. Encoding alone takes about 80% of the execution time of training. In this article, we propose, ReHD, an entire rework of encoding, training, and inference in HD computing for a more hardware friendly implementation. ReHD includes a full binary encoding module for HD computing for energy-efficient and high-accuracy classification. Our encoding module based on random projection with a predictable memory access pattern can be efficiently implemented in hardware. ReHD is the first HD-based approach that provides data projection with a 1:1 ratio to the original data and enables all training/inference computation to be performed using binary hypervectors. After the optimizations ReHD adds to the encoding process, retraining and inference become the energy intensive part of HD computing. To resolve this, we additionally propose model quantization. Model quantization introduces a novel method of storing class hypervectors using n -bits, where n ranges from 1 to 32, rather than at full 32-bit precision, which allows for fine-grained tuning of the tradeoff between energy efficiency and accuracy. To further improve ReHD efficiency, we developed an online dimension reduction approach that removes insignificant hypervector dimensions during training. |
doi_str_mv | 10.1109/TCAD.2021.3069139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2640430326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9388914</ieee_id><sourcerecordid>2640430326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8fddf1cadb2ae4dab14480f031f518fe2358bf15f6703f2e9799683643b129f33</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO48J0nb5HJ20wkTESZehrRNJKNrZ9JezKe3Y-LV-eF8_-HwEXKLMEME9bAp5osZA4YzDplCrs7IBBXPE4EpnpMJsFwmADlckqsYtwAoUqYm5HPdVabx_SF5NNHWdNlWXW0DNW1NX8fU0PfBtL3_Mb3vWuq6QJfO-crbtqerw96GZOF3to3j1jS06Hb7offt1zW5cKaJ9uZvTsnH03JTrJL12_NLMV8nFVO8T6Sra4eVqUtmrKhNiUJIcMDRpSidZTyVpcPUZTlwx6zKlcokzwQvkSnH-ZTcn-7uQ_c92NjrbTeE8ZWoWSZAcOAsGyk8UVXoYgzW6X3wOxMOGkEf_emjP330p__8jZ27U8dba_95xaVUKPgve0Jr1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640430326</pqid></control><display><type>article</type><title>Locality-Based Encoder and Model Quantization for Efficient Hyper-Dimensional Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Morris, Justin ; Fernando, Roshan ; Hao, Yilun ; Imani, Mohsen ; Aksanli, Baris ; Rosing, Tajana</creator><creatorcontrib>Morris, Justin ; Fernando, Roshan ; Hao, Yilun ; Imani, Mohsen ; Aksanli, Baris ; Rosing, Tajana</creatorcontrib><description><![CDATA[Brain-inspired hyper-dimensional (HD) computing is a new computing paradigm emulating the neuron's activity in high-dimensional space. The first step in HD computing is to map each data point into high-dimensional space (e.g., 10 000), which requires the computation of thousands of operations for each element of data in the original domain. Encoding alone takes about 80% of the execution time of training. In this article, we propose, ReHD, an entire rework of encoding, training, and inference in HD computing for a more hardware friendly implementation. ReHD includes a full binary encoding module for HD computing for energy-efficient and high-accuracy classification. Our encoding module based on random projection with a predictable memory access pattern can be efficiently implemented in hardware. ReHD is the first HD-based approach that provides data projection with a 1:1 ratio to the original data and enables all training/inference computation to be performed using binary hypervectors. After the optimizations ReHD adds to the encoding process, retraining and inference become the energy intensive part of HD computing. To resolve this, we additionally propose model quantization. Model quantization introduces a novel method of storing class hypervectors using <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-bits, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> ranges from 1 to 32, rather than at full 32-bit precision, which allows for fine-grained tuning of the tradeoff between energy efficiency and accuracy. To further improve ReHD efficiency, we developed an online dimension reduction approach that removes insignificant hypervector dimensions during training.]]></description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3069139</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Brain-inspired computing ; Coders ; Computation ; Computational modeling ; Data models ; Data points ; Encoding ; Energy efficiency ; Forecasting ; Hardware ; hyper-dimensional (HD) computing ; Inference ; machine learning ; Measurement ; Modules ; Quantization (signal) ; Task analysis ; Training</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2022-04, Vol.41 (4), p.897-907</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8fddf1cadb2ae4dab14480f031f518fe2358bf15f6703f2e9799683643b129f33</citedby><cites>FETCH-LOGICAL-c293t-8fddf1cadb2ae4dab14480f031f518fe2358bf15f6703f2e9799683643b129f33</cites><orcidid>0000-0002-7921-2561 ; 0000-0002-5761-0622 ; 0000-0002-9140-4056 ; 0000-0001-6347-9061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9388914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9388914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morris, Justin</creatorcontrib><creatorcontrib>Fernando, Roshan</creatorcontrib><creatorcontrib>Hao, Yilun</creatorcontrib><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Aksanli, Baris</creatorcontrib><creatorcontrib>Rosing, Tajana</creatorcontrib><title>Locality-Based Encoder and Model Quantization for Efficient Hyper-Dimensional Computing</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description><![CDATA[Brain-inspired hyper-dimensional (HD) computing is a new computing paradigm emulating the neuron's activity in high-dimensional space. The first step in HD computing is to map each data point into high-dimensional space (e.g., 10 000), which requires the computation of thousands of operations for each element of data in the original domain. Encoding alone takes about 80% of the execution time of training. In this article, we propose, ReHD, an entire rework of encoding, training, and inference in HD computing for a more hardware friendly implementation. ReHD includes a full binary encoding module for HD computing for energy-efficient and high-accuracy classification. Our encoding module based on random projection with a predictable memory access pattern can be efficiently implemented in hardware. ReHD is the first HD-based approach that provides data projection with a 1:1 ratio to the original data and enables all training/inference computation to be performed using binary hypervectors. After the optimizations ReHD adds to the encoding process, retraining and inference become the energy intensive part of HD computing. To resolve this, we additionally propose model quantization. Model quantization introduces a novel method of storing class hypervectors using <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-bits, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> ranges from 1 to 32, rather than at full 32-bit precision, which allows for fine-grained tuning of the tradeoff between energy efficiency and accuracy. To further improve ReHD efficiency, we developed an online dimension reduction approach that removes insignificant hypervector dimensions during training.]]></description><subject>Accuracy</subject><subject>Brain-inspired computing</subject><subject>Coders</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data points</subject><subject>Encoding</subject><subject>Energy efficiency</subject><subject>Forecasting</subject><subject>Hardware</subject><subject>hyper-dimensional (HD) computing</subject><subject>Inference</subject><subject>machine learning</subject><subject>Measurement</subject><subject>Modules</subject><subject>Quantization (signal)</subject><subject>Task analysis</subject><subject>Training</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO48J0nb5HJ20wkTESZehrRNJKNrZ9JezKe3Y-LV-eF8_-HwEXKLMEME9bAp5osZA4YzDplCrs7IBBXPE4EpnpMJsFwmADlckqsYtwAoUqYm5HPdVabx_SF5NNHWdNlWXW0DNW1NX8fU0PfBtL3_Mb3vWuq6QJfO-crbtqerw96GZOF3to3j1jS06Hb7offt1zW5cKaJ9uZvTsnH03JTrJL12_NLMV8nFVO8T6Sra4eVqUtmrKhNiUJIcMDRpSidZTyVpcPUZTlwx6zKlcokzwQvkSnH-ZTcn-7uQ_c92NjrbTeE8ZWoWSZAcOAsGyk8UVXoYgzW6X3wOxMOGkEf_emjP330p__8jZ27U8dba_95xaVUKPgve0Jr1A</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Morris, Justin</creator><creator>Fernando, Roshan</creator><creator>Hao, Yilun</creator><creator>Imani, Mohsen</creator><creator>Aksanli, Baris</creator><creator>Rosing, Tajana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7921-2561</orcidid><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0002-9140-4056</orcidid><orcidid>https://orcid.org/0000-0001-6347-9061</orcidid></search><sort><creationdate>20220401</creationdate><title>Locality-Based Encoder and Model Quantization for Efficient Hyper-Dimensional Computing</title><author>Morris, Justin ; Fernando, Roshan ; Hao, Yilun ; Imani, Mohsen ; Aksanli, Baris ; Rosing, Tajana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8fddf1cadb2ae4dab14480f031f518fe2358bf15f6703f2e9799683643b129f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Brain-inspired computing</topic><topic>Coders</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data points</topic><topic>Encoding</topic><topic>Energy efficiency</topic><topic>Forecasting</topic><topic>Hardware</topic><topic>hyper-dimensional (HD) computing</topic><topic>Inference</topic><topic>machine learning</topic><topic>Measurement</topic><topic>Modules</topic><topic>Quantization (signal)</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Justin</creatorcontrib><creatorcontrib>Fernando, Roshan</creatorcontrib><creatorcontrib>Hao, Yilun</creatorcontrib><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Aksanli, Baris</creatorcontrib><creatorcontrib>Rosing, Tajana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morris, Justin</au><au>Fernando, Roshan</au><au>Hao, Yilun</au><au>Imani, Mohsen</au><au>Aksanli, Baris</au><au>Rosing, Tajana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locality-Based Encoder and Model Quantization for Efficient Hyper-Dimensional Computing</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>897</spage><epage>907</epage><pages>897-907</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract><![CDATA[Brain-inspired hyper-dimensional (HD) computing is a new computing paradigm emulating the neuron's activity in high-dimensional space. The first step in HD computing is to map each data point into high-dimensional space (e.g., 10 000), which requires the computation of thousands of operations for each element of data in the original domain. Encoding alone takes about 80% of the execution time of training. In this article, we propose, ReHD, an entire rework of encoding, training, and inference in HD computing for a more hardware friendly implementation. ReHD includes a full binary encoding module for HD computing for energy-efficient and high-accuracy classification. Our encoding module based on random projection with a predictable memory access pattern can be efficiently implemented in hardware. ReHD is the first HD-based approach that provides data projection with a 1:1 ratio to the original data and enables all training/inference computation to be performed using binary hypervectors. After the optimizations ReHD adds to the encoding process, retraining and inference become the energy intensive part of HD computing. To resolve this, we additionally propose model quantization. Model quantization introduces a novel method of storing class hypervectors using <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-bits, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> ranges from 1 to 32, rather than at full 32-bit precision, which allows for fine-grained tuning of the tradeoff between energy efficiency and accuracy. To further improve ReHD efficiency, we developed an online dimension reduction approach that removes insignificant hypervector dimensions during training.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3069139</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7921-2561</orcidid><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0002-9140-4056</orcidid><orcidid>https://orcid.org/0000-0001-6347-9061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2022-04, Vol.41 (4), p.897-907 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_journals_2640430326 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Brain-inspired computing Coders Computation Computational modeling Data models Data points Encoding Energy efficiency Forecasting Hardware hyper-dimensional (HD) computing Inference machine learning Measurement Modules Quantization (signal) Task analysis Training |
title | Locality-Based Encoder and Model Quantization for Efficient Hyper-Dimensional Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locality-Based%20Encoder%20and%20Model%20Quantization%20for%20Efficient%20Hyper-Dimensional%20Computing&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Morris,%20Justin&rft.date=2022-04-01&rft.volume=41&rft.issue=4&rft.spage=897&rft.epage=907&rft.pages=897-907&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3069139&rft_dat=%3Cproquest_RIE%3E2640430326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640430326&rft_id=info:pmid/&rft_ieee_id=9388914&rfr_iscdi=true |