Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study

[Display omitted] •The Ea of RDS of critical reactions on NFC was decreased comparing with NC.•The toluene cracking is most likely to occur on NFC, while WGSR is the opposite.•The addition of Fe makes NFC have high catalytic activity and stability.•Compared with NC, NFC reduces Yliquid by 18.32% and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2022-02, Vol.254, p.115246, Article 115246
Hauptverfasser: Wang, Jingwei, Zhao, Baofeng, Liu, Suxiang, Zhu, Di, Huang, Fayuan, Yang, Huajian, Guan, Haibin, Song, Angang, Xu, Dan, Sun, Laizhi, Xie, Hongzhang, Wei, Wei, Zhang, Wei, Helmer Pedersen, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115246
container_title Energy conversion and management
container_volume 254
creator Wang, Jingwei
Zhao, Baofeng
Liu, Suxiang
Zhu, Di
Huang, Fayuan
Yang, Huajian
Guan, Haibin
Song, Angang
Xu, Dan
Sun, Laizhi
Xie, Hongzhang
Wei, Wei
Zhang, Wei
Helmer Pedersen, Thomas
description [Display omitted] •The Ea of RDS of critical reactions on NFC was decreased comparing with NC.•The toluene cracking is most likely to occur on NFC, while WGSR is the opposite.•The addition of Fe makes NFC have high catalytic activity and stability.•Compared with NC, NFC reduces Yliquid by 18.32% and increases Ygas by 26.27%.•The H2 yield was increased by 18.29% to 453.34 mL/g-biomass at 650 ℃ with NFC. The H2-rich gas produced by biomass pyrolysis with Ni-based catalysts were studied by DFT, thermodynamic simulation, and pyrolysis experiment. The complex reaction between volatiles of biomass pyrolysis was clarified through DFT calculation. The results proved that the Ea of key reactions for H2 production on Ni-Fe/CaO surface were lower than that on NC, which facilitates to produce H2. The order of the Ea of the rate determining step on Ni-Fe/CaO surface is toluene cracking reaction 
doi_str_mv 10.1016/j.enconman.2022.115246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640397194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890422000425</els_id><sourcerecordid>2640397194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-4927cc70b4ed118375c38b38136577d639313fde8d0581cc04c0f222970873da3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwCsgSc9qzncQJEyhQQKroUmbLsZ3WURsHOwXy9qQEZqZbvv-_uw-hawIzAiSd1zPTKNfsZTOjQOmMkITG6QmakIznEaWUn6IJkDyNshzic3QRQg0ALIF0glwhO7nrO6tw23u364MN2FW4tG4vQ8CfttviVztfmKiQq6iUwWisfjKhC7hyHm977d3GNJG3aos3Mtzih8Uay0Zj89Uab_emGXgcuoPuL9FZJXfBXP3OKXpbPK6L52i5enop7peRYjF0UZxTrhSHMjaakIzxRLGsZBlhacK5TlnOCKu0yTQkGVEKYgXV8GrOIeNMSzZFN2Nv6937wYRO1O7gm2GloGkMLOckjwcqHSnlXQjeVKIdzpW-FwTEUa6oxZ9ccZQrRrlD8G4MmuGHD2u8CMoOpNHWG9UJ7ex_Fd_hL4WS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640397194</pqid></control><display><type>article</type><title>Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Jingwei ; Zhao, Baofeng ; Liu, Suxiang ; Zhu, Di ; Huang, Fayuan ; Yang, Huajian ; Guan, Haibin ; Song, Angang ; Xu, Dan ; Sun, Laizhi ; Xie, Hongzhang ; Wei, Wei ; Zhang, Wei ; Helmer Pedersen, Thomas</creator><creatorcontrib>Wang, Jingwei ; Zhao, Baofeng ; Liu, Suxiang ; Zhu, Di ; Huang, Fayuan ; Yang, Huajian ; Guan, Haibin ; Song, Angang ; Xu, Dan ; Sun, Laizhi ; Xie, Hongzhang ; Wei, Wei ; Zhang, Wei ; Helmer Pedersen, Thomas</creatorcontrib><description>[Display omitted] •The Ea of RDS of critical reactions on NFC was decreased comparing with NC.•The toluene cracking is most likely to occur on NFC, while WGSR is the opposite.•The addition of Fe makes NFC have high catalytic activity and stability.•Compared with NC, NFC reduces Yliquid by 18.32% and increases Ygas by 26.27%.•The H2 yield was increased by 18.29% to 453.34 mL/g-biomass at 650 ℃ with NFC. The H2-rich gas produced by biomass pyrolysis with Ni-based catalysts were studied by DFT, thermodynamic simulation, and pyrolysis experiment. The complex reaction between volatiles of biomass pyrolysis was clarified through DFT calculation. The results proved that the Ea of key reactions for H2 production on Ni-Fe/CaO surface were lower than that on NC, which facilitates to produce H2. The order of the Ea of the rate determining step on Ni-Fe/CaO surface is toluene cracking reaction &lt; water-carbon reaction &lt; Boudouard reaction &lt; methane steam reforming reaction &lt; methane dry reforming reaction &lt; water gas shift reaction, indicating water gas shift reaction is the key control reaction. When the temperature is 650 ℃, Ni-Fe/CaO can effectively adsorb CO2 to break the thermodynamic equilibrium of the water gas shift reaction and promote the forward reaction to generate H2. Thermodynamic simulation and pyrolysis experiments determined that 650℃ and Ni-Fe/CaO are the most suitable reaction condition for H2 formation. Under this condition, the liquid yield of biomass pyrolysis decreased by 18.32% and the gas yield was increased by 26.27% compared to that of Ni /CaO. More importantly, the H2 yield was increased by 18.29% to 453.34 mL/g-biomass.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2022.115246</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biomass ; Carbon dioxide ; Catalysts ; DFT ; H2 production ; Hydrogen production ; Iron ; Methane ; Ni-based catalysts ; Nickel ; Pyrolysis ; Pyrolysis mechanism ; Reforming ; Shift reaction ; Simulation ; Steam ; Thermodynamic equilibrium ; Thermodynamics ; Toluene ; Volatiles ; Water gas ; Yield</subject><ispartof>Energy conversion and management, 2022-02, Vol.254, p.115246, Article 115246</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-4927cc70b4ed118375c38b38136577d639313fde8d0581cc04c0f222970873da3</citedby><cites>FETCH-LOGICAL-c340t-4927cc70b4ed118375c38b38136577d639313fde8d0581cc04c0f222970873da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890422000425$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Jingwei</creatorcontrib><creatorcontrib>Zhao, Baofeng</creatorcontrib><creatorcontrib>Liu, Suxiang</creatorcontrib><creatorcontrib>Zhu, Di</creatorcontrib><creatorcontrib>Huang, Fayuan</creatorcontrib><creatorcontrib>Yang, Huajian</creatorcontrib><creatorcontrib>Guan, Haibin</creatorcontrib><creatorcontrib>Song, Angang</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Sun, Laizhi</creatorcontrib><creatorcontrib>Xie, Hongzhang</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Helmer Pedersen, Thomas</creatorcontrib><title>Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study</title><title>Energy conversion and management</title><description>[Display omitted] •The Ea of RDS of critical reactions on NFC was decreased comparing with NC.•The toluene cracking is most likely to occur on NFC, while WGSR is the opposite.•The addition of Fe makes NFC have high catalytic activity and stability.•Compared with NC, NFC reduces Yliquid by 18.32% and increases Ygas by 26.27%.•The H2 yield was increased by 18.29% to 453.34 mL/g-biomass at 650 ℃ with NFC. The H2-rich gas produced by biomass pyrolysis with Ni-based catalysts were studied by DFT, thermodynamic simulation, and pyrolysis experiment. The complex reaction between volatiles of biomass pyrolysis was clarified through DFT calculation. The results proved that the Ea of key reactions for H2 production on Ni-Fe/CaO surface were lower than that on NC, which facilitates to produce H2. The order of the Ea of the rate determining step on Ni-Fe/CaO surface is toluene cracking reaction &lt; water-carbon reaction &lt; Boudouard reaction &lt; methane steam reforming reaction &lt; methane dry reforming reaction &lt; water gas shift reaction, indicating water gas shift reaction is the key control reaction. When the temperature is 650 ℃, Ni-Fe/CaO can effectively adsorb CO2 to break the thermodynamic equilibrium of the water gas shift reaction and promote the forward reaction to generate H2. Thermodynamic simulation and pyrolysis experiments determined that 650℃ and Ni-Fe/CaO are the most suitable reaction condition for H2 formation. Under this condition, the liquid yield of biomass pyrolysis decreased by 18.32% and the gas yield was increased by 26.27% compared to that of Ni /CaO. More importantly, the H2 yield was increased by 18.29% to 453.34 mL/g-biomass.</description><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>DFT</subject><subject>H2 production</subject><subject>Hydrogen production</subject><subject>Iron</subject><subject>Methane</subject><subject>Ni-based catalysts</subject><subject>Nickel</subject><subject>Pyrolysis</subject><subject>Pyrolysis mechanism</subject><subject>Reforming</subject><subject>Shift reaction</subject><subject>Simulation</subject><subject>Steam</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>Toluene</subject><subject>Volatiles</subject><subject>Water gas</subject><subject>Yield</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwCsgSc9qzncQJEyhQQKroUmbLsZ3WURsHOwXy9qQEZqZbvv-_uw-hawIzAiSd1zPTKNfsZTOjQOmMkITG6QmakIznEaWUn6IJkDyNshzic3QRQg0ALIF0glwhO7nrO6tw23u364MN2FW4tG4vQ8CfttviVztfmKiQq6iUwWisfjKhC7hyHm977d3GNJG3aos3Mtzih8Uay0Zj89Uab_emGXgcuoPuL9FZJXfBXP3OKXpbPK6L52i5enop7peRYjF0UZxTrhSHMjaakIzxRLGsZBlhacK5TlnOCKu0yTQkGVEKYgXV8GrOIeNMSzZFN2Nv6937wYRO1O7gm2GloGkMLOckjwcqHSnlXQjeVKIdzpW-FwTEUa6oxZ9ccZQrRrlD8G4MmuGHD2u8CMoOpNHWG9UJ7ex_Fd_hL4WS</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Wang, Jingwei</creator><creator>Zhao, Baofeng</creator><creator>Liu, Suxiang</creator><creator>Zhu, Di</creator><creator>Huang, Fayuan</creator><creator>Yang, Huajian</creator><creator>Guan, Haibin</creator><creator>Song, Angang</creator><creator>Xu, Dan</creator><creator>Sun, Laizhi</creator><creator>Xie, Hongzhang</creator><creator>Wei, Wei</creator><creator>Zhang, Wei</creator><creator>Helmer Pedersen, Thomas</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220215</creationdate><title>Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study</title><author>Wang, Jingwei ; Zhao, Baofeng ; Liu, Suxiang ; Zhu, Di ; Huang, Fayuan ; Yang, Huajian ; Guan, Haibin ; Song, Angang ; Xu, Dan ; Sun, Laizhi ; Xie, Hongzhang ; Wei, Wei ; Zhang, Wei ; Helmer Pedersen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-4927cc70b4ed118375c38b38136577d639313fde8d0581cc04c0f222970873da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>DFT</topic><topic>H2 production</topic><topic>Hydrogen production</topic><topic>Iron</topic><topic>Methane</topic><topic>Ni-based catalysts</topic><topic>Nickel</topic><topic>Pyrolysis</topic><topic>Pyrolysis mechanism</topic><topic>Reforming</topic><topic>Shift reaction</topic><topic>Simulation</topic><topic>Steam</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>Toluene</topic><topic>Volatiles</topic><topic>Water gas</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingwei</creatorcontrib><creatorcontrib>Zhao, Baofeng</creatorcontrib><creatorcontrib>Liu, Suxiang</creatorcontrib><creatorcontrib>Zhu, Di</creatorcontrib><creatorcontrib>Huang, Fayuan</creatorcontrib><creatorcontrib>Yang, Huajian</creatorcontrib><creatorcontrib>Guan, Haibin</creatorcontrib><creatorcontrib>Song, Angang</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Sun, Laizhi</creatorcontrib><creatorcontrib>Xie, Hongzhang</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Helmer Pedersen, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingwei</au><au>Zhao, Baofeng</au><au>Liu, Suxiang</au><au>Zhu, Di</au><au>Huang, Fayuan</au><au>Yang, Huajian</au><au>Guan, Haibin</au><au>Song, Angang</au><au>Xu, Dan</au><au>Sun, Laizhi</au><au>Xie, Hongzhang</au><au>Wei, Wei</au><au>Zhang, Wei</au><au>Helmer Pedersen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study</atitle><jtitle>Energy conversion and management</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>254</volume><spage>115246</spage><pages>115246-</pages><artnum>115246</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>[Display omitted] •The Ea of RDS of critical reactions on NFC was decreased comparing with NC.•The toluene cracking is most likely to occur on NFC, while WGSR is the opposite.•The addition of Fe makes NFC have high catalytic activity and stability.•Compared with NC, NFC reduces Yliquid by 18.32% and increases Ygas by 26.27%.•The H2 yield was increased by 18.29% to 453.34 mL/g-biomass at 650 ℃ with NFC. The H2-rich gas produced by biomass pyrolysis with Ni-based catalysts were studied by DFT, thermodynamic simulation, and pyrolysis experiment. The complex reaction between volatiles of biomass pyrolysis was clarified through DFT calculation. The results proved that the Ea of key reactions for H2 production on Ni-Fe/CaO surface were lower than that on NC, which facilitates to produce H2. The order of the Ea of the rate determining step on Ni-Fe/CaO surface is toluene cracking reaction &lt; water-carbon reaction &lt; Boudouard reaction &lt; methane steam reforming reaction &lt; methane dry reforming reaction &lt; water gas shift reaction, indicating water gas shift reaction is the key control reaction. When the temperature is 650 ℃, Ni-Fe/CaO can effectively adsorb CO2 to break the thermodynamic equilibrium of the water gas shift reaction and promote the forward reaction to generate H2. Thermodynamic simulation and pyrolysis experiments determined that 650℃ and Ni-Fe/CaO are the most suitable reaction condition for H2 formation. Under this condition, the liquid yield of biomass pyrolysis decreased by 18.32% and the gas yield was increased by 26.27% compared to that of Ni /CaO. More importantly, the H2 yield was increased by 18.29% to 453.34 mL/g-biomass.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2022.115246</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2022-02, Vol.254, p.115246, Article 115246
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2640397194
source ScienceDirect Journals (5 years ago - present)
subjects Biomass
Carbon dioxide
Catalysts
DFT
H2 production
Hydrogen production
Iron
Methane
Ni-based catalysts
Nickel
Pyrolysis
Pyrolysis mechanism
Reforming
Shift reaction
Simulation
Steam
Thermodynamic equilibrium
Thermodynamics
Toluene
Volatiles
Water gas
Yield
title Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20pyrolysis%20of%20biomass%20with%20Ni/Fe-CaO-based%20catalysts%20for%20hydrogen-rich%20gas:%20DFT%20and%20experimental%20study&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Wang,%20Jingwei&rft.date=2022-02-15&rft.volume=254&rft.spage=115246&rft.pages=115246-&rft.artnum=115246&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2022.115246&rft_dat=%3Cproquest_cross%3E2640397194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640397194&rft_id=info:pmid/&rft_els_id=S0196890422000425&rfr_iscdi=true