Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology

•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2022-02, Vol.254, p.115198, Article 115198
Hauptverfasser: Kombe, Emmanuel Yeri, Lang'at, Nickson, Njogu, Paul, Malessa, Reiner, Weber, Christian-Toralf, Njoka, Francis, Krause, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115198
container_title Energy conversion and management
container_volume 254
creator Kombe, Emmanuel Yeri
Lang'at, Nickson
Njogu, Paul
Malessa, Reiner
Weber, Christian-Toralf
Njoka, Francis
Krause, Ulrich
description •Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses. Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision.
doi_str_mv 10.1016/j.enconman.2021.115198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640394909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890421013741</els_id><sourcerecordid>2640394909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF5Alzi3rxHn4RlXxkhBw6N3aOpvg0trFTir13-NSOHPZvXwzuzOMXQuYChDl7WpKzni3QTfNIBNTIQqh6hM2EnWlJlmWVadsBEKVk1qBPGcXMa4AIC-gHLHP12FDwRpcc-t2FHvbYW-9477lcegwGHTEl9hhjMTTtG2Cf4ghWtfxWdyS4-_rIXJ0DQ8Ut94lNA6hRUN8Q_2Hb_zad_tLdtbiOtLV7x6zxcP9Yv40eXl7fJ7PXiYml9CnL5sml5IKCUVVYL2UZYvLSpHE0mRFazKRJuQIpIhSjnpZ5hUUqkBCJfIxuznaboP_GlIkvfJDcOmizkoJuZIKVKLKI2WCjzFQq7fBbjDstQB96FWv9F-v-tCrPvaahHdHIaUIO0tBR2MTSY0NZHrdePufxTe8jIZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640394909</pqid></control><display><type>article</type><title>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kombe, Emmanuel Yeri ; Lang'at, Nickson ; Njogu, Paul ; Malessa, Reiner ; Weber, Christian-Toralf ; Njoka, Francis ; Krause, Ulrich</creator><creatorcontrib>Kombe, Emmanuel Yeri ; Lang'at, Nickson ; Njogu, Paul ; Malessa, Reiner ; Weber, Christian-Toralf ; Njoka, Francis ; Krause, Ulrich</creatorcontrib><description>•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses. Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2021.115198</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy sources ; Aspen Plus ; Bagasse ; Biomass ; Biomass gasification ; Calorific value ; Clean energy ; Cold gas ; Composition ; Downdraft ; Energy sources ; Equivalence ratio ; Fossil fuels ; Gasification ; Gibbs free energy minimization ; Moisture content ; Optimization ; Parameters ; Response surface methodology ; Sensitivity analysis ; Sugarcane ; Synthesis gas ; Thermodynamic models ; Water content</subject><ispartof>Energy conversion and management, 2022-02, Vol.254, p.115198, Article 115198</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</citedby><cites>FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2021.115198$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kombe, Emmanuel Yeri</creatorcontrib><creatorcontrib>Lang'at, Nickson</creatorcontrib><creatorcontrib>Njogu, Paul</creatorcontrib><creatorcontrib>Malessa, Reiner</creatorcontrib><creatorcontrib>Weber, Christian-Toralf</creatorcontrib><creatorcontrib>Njoka, Francis</creatorcontrib><creatorcontrib>Krause, Ulrich</creatorcontrib><title>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</title><title>Energy conversion and management</title><description>•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses. Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision.</description><subject>Alternative energy sources</subject><subject>Aspen Plus</subject><subject>Bagasse</subject><subject>Biomass</subject><subject>Biomass gasification</subject><subject>Calorific value</subject><subject>Clean energy</subject><subject>Cold gas</subject><subject>Composition</subject><subject>Downdraft</subject><subject>Energy sources</subject><subject>Equivalence ratio</subject><subject>Fossil fuels</subject><subject>Gasification</subject><subject>Gibbs free energy minimization</subject><subject>Moisture content</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Sugarcane</subject><subject>Synthesis gas</subject><subject>Thermodynamic models</subject><subject>Water content</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF5Alzi3rxHn4RlXxkhBw6N3aOpvg0trFTir13-NSOHPZvXwzuzOMXQuYChDl7WpKzni3QTfNIBNTIQqh6hM2EnWlJlmWVadsBEKVk1qBPGcXMa4AIC-gHLHP12FDwRpcc-t2FHvbYW-9477lcegwGHTEl9hhjMTTtG2Cf4ghWtfxWdyS4-_rIXJ0DQ8Ut94lNA6hRUN8Q_2Hb_zad_tLdtbiOtLV7x6zxcP9Yv40eXl7fJ7PXiYml9CnL5sml5IKCUVVYL2UZYvLSpHE0mRFazKRJuQIpIhSjnpZ5hUUqkBCJfIxuznaboP_GlIkvfJDcOmizkoJuZIKVKLKI2WCjzFQq7fBbjDstQB96FWv9F-v-tCrPvaahHdHIaUIO0tBR2MTSY0NZHrdePufxTe8jIZj</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Kombe, Emmanuel Yeri</creator><creator>Lang'at, Nickson</creator><creator>Njogu, Paul</creator><creator>Malessa, Reiner</creator><creator>Weber, Christian-Toralf</creator><creator>Njoka, Francis</creator><creator>Krause, Ulrich</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220215</creationdate><title>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</title><author>Kombe, Emmanuel Yeri ; Lang'at, Nickson ; Njogu, Paul ; Malessa, Reiner ; Weber, Christian-Toralf ; Njoka, Francis ; Krause, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Aspen Plus</topic><topic>Bagasse</topic><topic>Biomass</topic><topic>Biomass gasification</topic><topic>Calorific value</topic><topic>Clean energy</topic><topic>Cold gas</topic><topic>Composition</topic><topic>Downdraft</topic><topic>Energy sources</topic><topic>Equivalence ratio</topic><topic>Fossil fuels</topic><topic>Gasification</topic><topic>Gibbs free energy minimization</topic><topic>Moisture content</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Sugarcane</topic><topic>Synthesis gas</topic><topic>Thermodynamic models</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kombe, Emmanuel Yeri</creatorcontrib><creatorcontrib>Lang'at, Nickson</creatorcontrib><creatorcontrib>Njogu, Paul</creatorcontrib><creatorcontrib>Malessa, Reiner</creatorcontrib><creatorcontrib>Weber, Christian-Toralf</creatorcontrib><creatorcontrib>Njoka, Francis</creatorcontrib><creatorcontrib>Krause, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kombe, Emmanuel Yeri</au><au>Lang'at, Nickson</au><au>Njogu, Paul</au><au>Malessa, Reiner</au><au>Weber, Christian-Toralf</au><au>Njoka, Francis</au><au>Krause, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</atitle><jtitle>Energy conversion and management</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>254</volume><spage>115198</spage><pages>115198-</pages><artnum>115198</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses. Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2021.115198</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2022-02, Vol.254, p.115198, Article 115198
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2640394909
source Elsevier ScienceDirect Journals Complete
subjects Alternative energy sources
Aspen Plus
Bagasse
Biomass
Biomass gasification
Calorific value
Clean energy
Cold gas
Composition
Downdraft
Energy sources
Equivalence ratio
Fossil fuels
Gasification
Gibbs free energy minimization
Moisture content
Optimization
Parameters
Response surface methodology
Sensitivity analysis
Sugarcane
Synthesis gas
Thermodynamic models
Water content
title Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20sugarcane%20bagasse%20gasification%20using%20Aspen%20Plus%20and%20response%20surface%20methodology&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Kombe,%20Emmanuel%20Yeri&rft.date=2022-02-15&rft.volume=254&rft.spage=115198&rft.pages=115198-&rft.artnum=115198&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2021.115198&rft_dat=%3Cproquest_cross%3E2640394909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640394909&rft_id=info:pmid/&rft_els_id=S0196890421013741&rfr_iscdi=true