Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology
•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2022-02, Vol.254, p.115198, Article 115198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115198 |
container_title | Energy conversion and management |
container_volume | 254 |
creator | Kombe, Emmanuel Yeri Lang'at, Nickson Njogu, Paul Malessa, Reiner Weber, Christian-Toralf Njoka, Francis Krause, Ulrich |
description | •Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses.
Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision. |
doi_str_mv | 10.1016/j.enconman.2021.115198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640394909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890421013741</els_id><sourcerecordid>2640394909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF5Alzi3rxHn4RlXxkhBw6N3aOpvg0trFTir13-NSOHPZvXwzuzOMXQuYChDl7WpKzni3QTfNIBNTIQqh6hM2EnWlJlmWVadsBEKVk1qBPGcXMa4AIC-gHLHP12FDwRpcc-t2FHvbYW-9477lcegwGHTEl9hhjMTTtG2Cf4ghWtfxWdyS4-_rIXJ0DQ8Ut94lNA6hRUN8Q_2Hb_zad_tLdtbiOtLV7x6zxcP9Yv40eXl7fJ7PXiYml9CnL5sml5IKCUVVYL2UZYvLSpHE0mRFazKRJuQIpIhSjnpZ5hUUqkBCJfIxuznaboP_GlIkvfJDcOmizkoJuZIKVKLKI2WCjzFQq7fBbjDstQB96FWv9F-v-tCrPvaahHdHIaUIO0tBR2MTSY0NZHrdePufxTe8jIZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640394909</pqid></control><display><type>article</type><title>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kombe, Emmanuel Yeri ; Lang'at, Nickson ; Njogu, Paul ; Malessa, Reiner ; Weber, Christian-Toralf ; Njoka, Francis ; Krause, Ulrich</creator><creatorcontrib>Kombe, Emmanuel Yeri ; Lang'at, Nickson ; Njogu, Paul ; Malessa, Reiner ; Weber, Christian-Toralf ; Njoka, Francis ; Krause, Ulrich</creatorcontrib><description>•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses.
Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2021.115198</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy sources ; Aspen Plus ; Bagasse ; Biomass ; Biomass gasification ; Calorific value ; Clean energy ; Cold gas ; Composition ; Downdraft ; Energy sources ; Equivalence ratio ; Fossil fuels ; Gasification ; Gibbs free energy minimization ; Moisture content ; Optimization ; Parameters ; Response surface methodology ; Sensitivity analysis ; Sugarcane ; Synthesis gas ; Thermodynamic models ; Water content</subject><ispartof>Energy conversion and management, 2022-02, Vol.254, p.115198, Article 115198</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</citedby><cites>FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2021.115198$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kombe, Emmanuel Yeri</creatorcontrib><creatorcontrib>Lang'at, Nickson</creatorcontrib><creatorcontrib>Njogu, Paul</creatorcontrib><creatorcontrib>Malessa, Reiner</creatorcontrib><creatorcontrib>Weber, Christian-Toralf</creatorcontrib><creatorcontrib>Njoka, Francis</creatorcontrib><creatorcontrib>Krause, Ulrich</creatorcontrib><title>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</title><title>Energy conversion and management</title><description>•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses.
Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision.</description><subject>Alternative energy sources</subject><subject>Aspen Plus</subject><subject>Bagasse</subject><subject>Biomass</subject><subject>Biomass gasification</subject><subject>Calorific value</subject><subject>Clean energy</subject><subject>Cold gas</subject><subject>Composition</subject><subject>Downdraft</subject><subject>Energy sources</subject><subject>Equivalence ratio</subject><subject>Fossil fuels</subject><subject>Gasification</subject><subject>Gibbs free energy minimization</subject><subject>Moisture content</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Sugarcane</subject><subject>Synthesis gas</subject><subject>Thermodynamic models</subject><subject>Water content</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF5Alzi3rxHn4RlXxkhBw6N3aOpvg0trFTir13-NSOHPZvXwzuzOMXQuYChDl7WpKzni3QTfNIBNTIQqh6hM2EnWlJlmWVadsBEKVk1qBPGcXMa4AIC-gHLHP12FDwRpcc-t2FHvbYW-9477lcegwGHTEl9hhjMTTtG2Cf4ghWtfxWdyS4-_rIXJ0DQ8Ut94lNA6hRUN8Q_2Hb_zad_tLdtbiOtLV7x6zxcP9Yv40eXl7fJ7PXiYml9CnL5sml5IKCUVVYL2UZYvLSpHE0mRFazKRJuQIpIhSjnpZ5hUUqkBCJfIxuznaboP_GlIkvfJDcOmizkoJuZIKVKLKI2WCjzFQq7fBbjDstQB96FWv9F-v-tCrPvaahHdHIaUIO0tBR2MTSY0NZHrdePufxTe8jIZj</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Kombe, Emmanuel Yeri</creator><creator>Lang'at, Nickson</creator><creator>Njogu, Paul</creator><creator>Malessa, Reiner</creator><creator>Weber, Christian-Toralf</creator><creator>Njoka, Francis</creator><creator>Krause, Ulrich</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220215</creationdate><title>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</title><author>Kombe, Emmanuel Yeri ; Lang'at, Nickson ; Njogu, Paul ; Malessa, Reiner ; Weber, Christian-Toralf ; Njoka, Francis ; Krause, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-89dd344e540575a8b46fab79e4a6c25fc2125f03a0e9ee0358b6370595aea913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Aspen Plus</topic><topic>Bagasse</topic><topic>Biomass</topic><topic>Biomass gasification</topic><topic>Calorific value</topic><topic>Clean energy</topic><topic>Cold gas</topic><topic>Composition</topic><topic>Downdraft</topic><topic>Energy sources</topic><topic>Equivalence ratio</topic><topic>Fossil fuels</topic><topic>Gasification</topic><topic>Gibbs free energy minimization</topic><topic>Moisture content</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Sugarcane</topic><topic>Synthesis gas</topic><topic>Thermodynamic models</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kombe, Emmanuel Yeri</creatorcontrib><creatorcontrib>Lang'at, Nickson</creatorcontrib><creatorcontrib>Njogu, Paul</creatorcontrib><creatorcontrib>Malessa, Reiner</creatorcontrib><creatorcontrib>Weber, Christian-Toralf</creatorcontrib><creatorcontrib>Njoka, Francis</creatorcontrib><creatorcontrib>Krause, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kombe, Emmanuel Yeri</au><au>Lang'at, Nickson</au><au>Njogu, Paul</au><au>Malessa, Reiner</au><au>Weber, Christian-Toralf</au><au>Njoka, Francis</au><au>Krause, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology</atitle><jtitle>Energy conversion and management</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>254</volume><spage>115198</spage><pages>115198-</pages><artnum>115198</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Gasification process is optimized using multi-objective response surface methodology.•High gasification temperatures and low moisture contents yield high.LHVSyngas.•Gasification temperature and equivalence ratio are the most effective parameters.•The generated regression models are found to have a high degree of accuracy.•Optimal settings in the optimization model yield favorable results in all responses.
Efficient utilization of biomass as an alternative energy resource to fossil fuel has been considered the most promising clean energy option. Gasification technology is at the forefront of biomass conversion amidst other technologies due to its high flexibility in utilizing various kinds of biomass feedstocks. In this study, a thermodynamic model of gasification of sugarcane bagasse with air as the gasifying agent is developed to predict the composition of syngas in a downdraft gasifier using Aspen Plus software at various operating conditions. The model is validated with published experimental results from previous studies. A sensitivity analysis is performed to study the influence of the main operating parameters, namely; gasification temperature, moisture content (MC), and equivalence ratio (ER) on the syngas composition, syngas yield (Qyield), lower heating value of syngas (LHVSyngas), cold gas efficiency (CGE), and carbon conversion efficiency (CCE). Furthermore, response surface methodology is applied to study the combined effects of the main operating parameters and thus determine the optimized zone of the operating condition for maximumLHVSyngas, CGE, hydrogen production, and minimum carbon dioxide production. The regression models for lower heating value, cold gas efficiency, and the concentration of syngas (CO2, and H2) generated from the ANOVA tool are found to have a high degree of accuracy. The optimal operating condition of the gasification temperature, equivalence ratio, and moisture content for maximumLHVSyngas, CGE,H2concentration and minimum carbon dioxide concentration is found to be 877.27 °C, 0.08, and 10%, respectively with the corresponding optimal product values of 7.92 MJ/Nm3, 74.22 %, 31.24%, and 3.91%. The findings of this study show that a blend of simulation with advanced optimization tools can indeed achieve optimal operating conditions of a gasification system at a more refined precision.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2021.115198</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2022-02, Vol.254, p.115198, Article 115198 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_journals_2640394909 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alternative energy sources Aspen Plus Bagasse Biomass Biomass gasification Calorific value Clean energy Cold gas Composition Downdraft Energy sources Equivalence ratio Fossil fuels Gasification Gibbs free energy minimization Moisture content Optimization Parameters Response surface methodology Sensitivity analysis Sugarcane Synthesis gas Thermodynamic models Water content |
title | Numerical investigation of sugarcane bagasse gasification using Aspen Plus and response surface methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20sugarcane%20bagasse%20gasification%20using%20Aspen%20Plus%20and%20response%20surface%20methodology&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Kombe,%20Emmanuel%20Yeri&rft.date=2022-02-15&rft.volume=254&rft.spage=115198&rft.pages=115198-&rft.artnum=115198&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2021.115198&rft_dat=%3Cproquest_cross%3E2640394909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640394909&rft_id=info:pmid/&rft_els_id=S0196890421013741&rfr_iscdi=true |