Thermal noise of hot carriers under natural sunlight

•Noise thermometry can measure hot carrier temperature under natural sunlight.•Calibration of equipment is possible using heated metal film resistors.•Graphite and PbTe thin films demonstrate hot carriers under concentrated sunlight.•We see no carrier heating above lattice temperature in bismuth und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2022-03, Vol.234, p.387-391
Hauptverfasser: Konovalov, Igor, Bhattacharjee, Niladri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue
container_start_page 387
container_title Solar energy
container_volume 234
creator Konovalov, Igor
Bhattacharjee, Niladri
description •Noise thermometry can measure hot carrier temperature under natural sunlight.•Calibration of equipment is possible using heated metal film resistors.•Graphite and PbTe thin films demonstrate hot carriers under concentrated sunlight.•We see no carrier heating above lattice temperature in bismuth under sunlight.•New candidate materials for hot carrier solar cell absorbers can be assessed. The efficiency of hot carrier solar cells strongly depends on the attainable carrier temperature in the absorber material. Measurements of hot carrier temperature under natural concentrated sunlight were performed at thin films of graphite, bismuth and PbTe, cooled through AlN ceramic substrate. The carrier temperature was assessed by magnitude of thermal noise voltage of charge carriers in the frequency range between 300 and 20,000 Hz according to Nyquist formula. Noise measurement equipment was calibrated in a range of sample impedances by using heated metal film resistors. We found that the carrier temperature in graphite films can exceed 600 °C under up to 15,000× suns and is much higher than the estimated lattice temperature in the film under the given cooling conditions. Secondary electron micrographs illustrate a good mechanical contact between the graphite film and the AlN substrate. We found also distinct heating of charge carriers in PbTe up to about 100 °C. Contrary to that, no measurable carrier heating above the lattice temperature was detected in bismuth films. Johnson noise thermometry demonstrates potential in identification of attractive candidate materials for absorbers in hot carrier solar cells.
doi_str_mv 10.1016/j.solener.2022.01.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640394757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X22000408</els_id><sourcerecordid>2640394757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-325eee0ca4b303ccb2e7c798e1e202a3933a429f604c3c6231bc1cfc863361903</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_ghDwnDizm2STk0jxCwpeKnhbttOJTUizdTcR_Pduae-e5vJ-zPsIcYuQIWB532XB9TywzyRImQFmoPBMzDDXmKIs9LmYAagqhVp-XoqrEDoA1FjpmchXW_Y72yeDawMnrkm2bkzIet-yD8k0bNgngx0nHzVhGvr2aztei4vG9oFvTncuPp6fVovXdPn-8rZ4XKYkq2JMlSyYGcjmawWKaC1Zk64rRo6PWlUrZXNZNyXkpKiUCteE1FBVKlViDWou7o65e---Jw6j6dzkh1hpZJmDqnNd6KgqjiryLgTPjdn7dmf9r0EwB0CmMydA5gDIAJoIKPoejj6OE37iXBOo5YF403qm0Wxc-0_CH-IucIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640394757</pqid></control><display><type>article</type><title>Thermal noise of hot carriers under natural sunlight</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Konovalov, Igor ; Bhattacharjee, Niladri</creator><creatorcontrib>Konovalov, Igor ; Bhattacharjee, Niladri</creatorcontrib><description>•Noise thermometry can measure hot carrier temperature under natural sunlight.•Calibration of equipment is possible using heated metal film resistors.•Graphite and PbTe thin films demonstrate hot carriers under concentrated sunlight.•We see no carrier heating above lattice temperature in bismuth under sunlight.•New candidate materials for hot carrier solar cell absorbers can be assessed. The efficiency of hot carrier solar cells strongly depends on the attainable carrier temperature in the absorber material. Measurements of hot carrier temperature under natural concentrated sunlight were performed at thin films of graphite, bismuth and PbTe, cooled through AlN ceramic substrate. The carrier temperature was assessed by magnitude of thermal noise voltage of charge carriers in the frequency range between 300 and 20,000 Hz according to Nyquist formula. Noise measurement equipment was calibrated in a range of sample impedances by using heated metal film resistors. We found that the carrier temperature in graphite films can exceed 600 °C under up to 15,000× suns and is much higher than the estimated lattice temperature in the film under the given cooling conditions. Secondary electron micrographs illustrate a good mechanical contact between the graphite film and the AlN substrate. We found also distinct heating of charge carriers in PbTe up to about 100 °C. Contrary to that, no measurable carrier heating above the lattice temperature was detected in bismuth films. Johnson noise thermometry demonstrates potential in identification of attractive candidate materials for absorbers in hot carrier solar cells.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2022.01.031</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Absorbers (materials) ; Bismuth ; Carrier density ; Current carriers ; Electron micrographs ; Frequency ranges ; Graphite ; Heating ; Hot carrier solar cell ; Intermetallic compounds ; Materials selection ; Noise ; Noise measurement ; Noise thermometry ; Photovoltaic cells ; Resistors ; Solar cells ; Solar energy ; Substrates ; Sunlight ; Thermal noise ; Thin films</subject><ispartof>Solar energy, 2022-03, Vol.234, p.387-391</ispartof><rights>2022 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Mar 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-325eee0ca4b303ccb2e7c798e1e202a3933a429f604c3c6231bc1cfc863361903</cites><orcidid>0000-0002-2156-9090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2022.01.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Konovalov, Igor</creatorcontrib><creatorcontrib>Bhattacharjee, Niladri</creatorcontrib><title>Thermal noise of hot carriers under natural sunlight</title><title>Solar energy</title><description>•Noise thermometry can measure hot carrier temperature under natural sunlight.•Calibration of equipment is possible using heated metal film resistors.•Graphite and PbTe thin films demonstrate hot carriers under concentrated sunlight.•We see no carrier heating above lattice temperature in bismuth under sunlight.•New candidate materials for hot carrier solar cell absorbers can be assessed. The efficiency of hot carrier solar cells strongly depends on the attainable carrier temperature in the absorber material. Measurements of hot carrier temperature under natural concentrated sunlight were performed at thin films of graphite, bismuth and PbTe, cooled through AlN ceramic substrate. The carrier temperature was assessed by magnitude of thermal noise voltage of charge carriers in the frequency range between 300 and 20,000 Hz according to Nyquist formula. Noise measurement equipment was calibrated in a range of sample impedances by using heated metal film resistors. We found that the carrier temperature in graphite films can exceed 600 °C under up to 15,000× suns and is much higher than the estimated lattice temperature in the film under the given cooling conditions. Secondary electron micrographs illustrate a good mechanical contact between the graphite film and the AlN substrate. We found also distinct heating of charge carriers in PbTe up to about 100 °C. Contrary to that, no measurable carrier heating above the lattice temperature was detected in bismuth films. Johnson noise thermometry demonstrates potential in identification of attractive candidate materials for absorbers in hot carrier solar cells.</description><subject>Absorbers (materials)</subject><subject>Bismuth</subject><subject>Carrier density</subject><subject>Current carriers</subject><subject>Electron micrographs</subject><subject>Frequency ranges</subject><subject>Graphite</subject><subject>Heating</subject><subject>Hot carrier solar cell</subject><subject>Intermetallic compounds</subject><subject>Materials selection</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise thermometry</subject><subject>Photovoltaic cells</subject><subject>Resistors</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Substrates</subject><subject>Sunlight</subject><subject>Thermal noise</subject><subject>Thin films</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_ghDwnDizm2STk0jxCwpeKnhbttOJTUizdTcR_Pduae-e5vJ-zPsIcYuQIWB532XB9TywzyRImQFmoPBMzDDXmKIs9LmYAagqhVp-XoqrEDoA1FjpmchXW_Y72yeDawMnrkm2bkzIet-yD8k0bNgngx0nHzVhGvr2aztei4vG9oFvTncuPp6fVovXdPn-8rZ4XKYkq2JMlSyYGcjmawWKaC1Zk64rRo6PWlUrZXNZNyXkpKiUCteE1FBVKlViDWou7o65e---Jw6j6dzkh1hpZJmDqnNd6KgqjiryLgTPjdn7dmf9r0EwB0CmMydA5gDIAJoIKPoejj6OE37iXBOo5YF403qm0Wxc-0_CH-IucIQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Konovalov, Igor</creator><creator>Bhattacharjee, Niladri</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2156-9090</orcidid></search><sort><creationdate>20220301</creationdate><title>Thermal noise of hot carriers under natural sunlight</title><author>Konovalov, Igor ; Bhattacharjee, Niladri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-325eee0ca4b303ccb2e7c798e1e202a3933a429f604c3c6231bc1cfc863361903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers (materials)</topic><topic>Bismuth</topic><topic>Carrier density</topic><topic>Current carriers</topic><topic>Electron micrographs</topic><topic>Frequency ranges</topic><topic>Graphite</topic><topic>Heating</topic><topic>Hot carrier solar cell</topic><topic>Intermetallic compounds</topic><topic>Materials selection</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise thermometry</topic><topic>Photovoltaic cells</topic><topic>Resistors</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Substrates</topic><topic>Sunlight</topic><topic>Thermal noise</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konovalov, Igor</creatorcontrib><creatorcontrib>Bhattacharjee, Niladri</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konovalov, Igor</au><au>Bhattacharjee, Niladri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal noise of hot carriers under natural sunlight</atitle><jtitle>Solar energy</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>234</volume><spage>387</spage><epage>391</epage><pages>387-391</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Noise thermometry can measure hot carrier temperature under natural sunlight.•Calibration of equipment is possible using heated metal film resistors.•Graphite and PbTe thin films demonstrate hot carriers under concentrated sunlight.•We see no carrier heating above lattice temperature in bismuth under sunlight.•New candidate materials for hot carrier solar cell absorbers can be assessed. The efficiency of hot carrier solar cells strongly depends on the attainable carrier temperature in the absorber material. Measurements of hot carrier temperature under natural concentrated sunlight were performed at thin films of graphite, bismuth and PbTe, cooled through AlN ceramic substrate. The carrier temperature was assessed by magnitude of thermal noise voltage of charge carriers in the frequency range between 300 and 20,000 Hz according to Nyquist formula. Noise measurement equipment was calibrated in a range of sample impedances by using heated metal film resistors. We found that the carrier temperature in graphite films can exceed 600 °C under up to 15,000× suns and is much higher than the estimated lattice temperature in the film under the given cooling conditions. Secondary electron micrographs illustrate a good mechanical contact between the graphite film and the AlN substrate. We found also distinct heating of charge carriers in PbTe up to about 100 °C. Contrary to that, no measurable carrier heating above the lattice temperature was detected in bismuth films. Johnson noise thermometry demonstrates potential in identification of attractive candidate materials for absorbers in hot carrier solar cells.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2022.01.031</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2156-9090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2022-03, Vol.234, p.387-391
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2640394757
source ScienceDirect Journals (5 years ago - present)
subjects Absorbers (materials)
Bismuth
Carrier density
Current carriers
Electron micrographs
Frequency ranges
Graphite
Heating
Hot carrier solar cell
Intermetallic compounds
Materials selection
Noise
Noise measurement
Noise thermometry
Photovoltaic cells
Resistors
Solar cells
Solar energy
Substrates
Sunlight
Thermal noise
Thin films
title Thermal noise of hot carriers under natural sunlight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20noise%20of%20hot%20carriers%20under%20natural%20sunlight&rft.jtitle=Solar%20energy&rft.au=Konovalov,%20Igor&rft.date=2022-03-01&rft.volume=234&rft.spage=387&rft.epage=391&rft.pages=387-391&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2022.01.031&rft_dat=%3Cproquest_cross%3E2640394757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640394757&rft_id=info:pmid/&rft_els_id=S0038092X22000408&rfr_iscdi=true