Routing Single Photons from a Trapped Ion Using a Photonic Integrated Circuit

Trapped ions are promising candidates for nodes of a scalable quantum network due to their long-lived qubit coherence times and high-fidelity single and two-qubit gates. Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes. Photonic integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Saha, Uday, Siverns, James D, Hannegan, John, Prabhu, Mihika, Quraishi, Qudsia, Englund, Dirk, Waks, Edo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Saha, Uday
Siverns, James D
Hannegan, John
Prabhu, Mihika
Quraishi, Qudsia
Englund, Dirk
Waks, Edo
description Trapped ions are promising candidates for nodes of a scalable quantum network due to their long-lived qubit coherence times and high-fidelity single and two-qubit gates. Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes. Photonic integrated circuits from fabrication foundries provide a compact solution to this problem. However, these circuits typically operate at telecommunication wavelengths which are incompatible with the strong dipole emissions of trapped ions. In this work, we demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit. We employ quantum frequency conversion to match the emission of the ion to the operating wavelength of a foundry-fabricated silicon nitride photonic integrated circuit, achieving a total transmission of 31\(\pm\)0.9% through the device. Using programmable phase shifters, we switch the single photons between the output channels of the circuit and also demonstrate a 50/50 beam splitting condition. These results constitute an important step towards programmable routing and entanglement distribution in large-scale quantum networks and distributed quantum computers.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2640167409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640167409</sourcerecordid><originalsourceid>FETCH-proquest_journals_26401674093</originalsourceid><addsrcrecordid>eNqNyssKgkAYhuEhCJLyHn5oLYwzHmotRS6CKF3LYKON2Pw2h_vPwAto832L91mRgHEeR4eEsQ0JrR0opSzLWZrygFzv6J3SPTzmGSXcXuhQW-gMvkFAZcQ0ySeUqKG2PycWolootZO9EW7uhTKtV25H1p0YrQyX35L9-VQVl2gy-PHSumZAb_ScGpYlNM7yhB75f-oLR209RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640167409</pqid></control><display><type>article</type><title>Routing Single Photons from a Trapped Ion Using a Photonic Integrated Circuit</title><source>Free E- Journals</source><creator>Saha, Uday ; Siverns, James D ; Hannegan, John ; Prabhu, Mihika ; Quraishi, Qudsia ; Englund, Dirk ; Waks, Edo</creator><creatorcontrib>Saha, Uday ; Siverns, James D ; Hannegan, John ; Prabhu, Mihika ; Quraishi, Qudsia ; Englund, Dirk ; Waks, Edo</creatorcontrib><description>Trapped ions are promising candidates for nodes of a scalable quantum network due to their long-lived qubit coherence times and high-fidelity single and two-qubit gates. Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes. Photonic integrated circuits from fabrication foundries provide a compact solution to this problem. However, these circuits typically operate at telecommunication wavelengths which are incompatible with the strong dipole emissions of trapped ions. In this work, we demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit. We employ quantum frequency conversion to match the emission of the ion to the operating wavelength of a foundry-fabricated silicon nitride photonic integrated circuit, achieving a total transmission of 31\(\pm\)0.9% through the device. Using programmable phase shifters, we switch the single photons between the output channels of the circuit and also demonstrate a 50/50 beam splitting condition. These results constitute an important step towards programmable routing and entanglement distribution in large-scale quantum networks and distributed quantum computers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beam splitters ; Dipoles ; Foundries ; Gates (circuits) ; Gating and risering ; Integrated circuits ; Nodes ; Phase shifters ; Photonics ; Photons ; Quantum computers ; Quantum entanglement ; Qubits (quantum computing) ; Silicon nitride</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Saha, Uday</creatorcontrib><creatorcontrib>Siverns, James D</creatorcontrib><creatorcontrib>Hannegan, John</creatorcontrib><creatorcontrib>Prabhu, Mihika</creatorcontrib><creatorcontrib>Quraishi, Qudsia</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Waks, Edo</creatorcontrib><title>Routing Single Photons from a Trapped Ion Using a Photonic Integrated Circuit</title><title>arXiv.org</title><description>Trapped ions are promising candidates for nodes of a scalable quantum network due to their long-lived qubit coherence times and high-fidelity single and two-qubit gates. Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes. Photonic integrated circuits from fabrication foundries provide a compact solution to this problem. However, these circuits typically operate at telecommunication wavelengths which are incompatible with the strong dipole emissions of trapped ions. In this work, we demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit. We employ quantum frequency conversion to match the emission of the ion to the operating wavelength of a foundry-fabricated silicon nitride photonic integrated circuit, achieving a total transmission of 31\(\pm\)0.9% through the device. Using programmable phase shifters, we switch the single photons between the output channels of the circuit and also demonstrate a 50/50 beam splitting condition. These results constitute an important step towards programmable routing and entanglement distribution in large-scale quantum networks and distributed quantum computers.</description><subject>Beam splitters</subject><subject>Dipoles</subject><subject>Foundries</subject><subject>Gates (circuits)</subject><subject>Gating and risering</subject><subject>Integrated circuits</subject><subject>Nodes</subject><subject>Phase shifters</subject><subject>Photonics</subject><subject>Photons</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><subject>Qubits (quantum computing)</subject><subject>Silicon nitride</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyssKgkAYhuEhCJLyHn5oLYwzHmotRS6CKF3LYKON2Pw2h_vPwAto832L91mRgHEeR4eEsQ0JrR0opSzLWZrygFzv6J3SPTzmGSXcXuhQW-gMvkFAZcQ0ySeUqKG2PycWolootZO9EW7uhTKtV25H1p0YrQyX35L9-VQVl2gy-PHSumZAb_ScGpYlNM7yhB75f-oLR209RQ</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Saha, Uday</creator><creator>Siverns, James D</creator><creator>Hannegan, John</creator><creator>Prabhu, Mihika</creator><creator>Quraishi, Qudsia</creator><creator>Englund, Dirk</creator><creator>Waks, Edo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220316</creationdate><title>Routing Single Photons from a Trapped Ion Using a Photonic Integrated Circuit</title><author>Saha, Uday ; Siverns, James D ; Hannegan, John ; Prabhu, Mihika ; Quraishi, Qudsia ; Englund, Dirk ; Waks, Edo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26401674093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beam splitters</topic><topic>Dipoles</topic><topic>Foundries</topic><topic>Gates (circuits)</topic><topic>Gating and risering</topic><topic>Integrated circuits</topic><topic>Nodes</topic><topic>Phase shifters</topic><topic>Photonics</topic><topic>Photons</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><topic>Qubits (quantum computing)</topic><topic>Silicon nitride</topic><toplevel>online_resources</toplevel><creatorcontrib>Saha, Uday</creatorcontrib><creatorcontrib>Siverns, James D</creatorcontrib><creatorcontrib>Hannegan, John</creatorcontrib><creatorcontrib>Prabhu, Mihika</creatorcontrib><creatorcontrib>Quraishi, Qudsia</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Waks, Edo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Uday</au><au>Siverns, James D</au><au>Hannegan, John</au><au>Prabhu, Mihika</au><au>Quraishi, Qudsia</au><au>Englund, Dirk</au><au>Waks, Edo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Routing Single Photons from a Trapped Ion Using a Photonic Integrated Circuit</atitle><jtitle>arXiv.org</jtitle><date>2022-03-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Trapped ions are promising candidates for nodes of a scalable quantum network due to their long-lived qubit coherence times and high-fidelity single and two-qubit gates. Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes. Photonic integrated circuits from fabrication foundries provide a compact solution to this problem. However, these circuits typically operate at telecommunication wavelengths which are incompatible with the strong dipole emissions of trapped ions. In this work, we demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit. We employ quantum frequency conversion to match the emission of the ion to the operating wavelength of a foundry-fabricated silicon nitride photonic integrated circuit, achieving a total transmission of 31\(\pm\)0.9% through the device. Using programmable phase shifters, we switch the single photons between the output channels of the circuit and also demonstrate a 50/50 beam splitting condition. These results constitute an important step towards programmable routing and entanglement distribution in large-scale quantum networks and distributed quantum computers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2640167409
source Free E- Journals
subjects Beam splitters
Dipoles
Foundries
Gates (circuits)
Gating and risering
Integrated circuits
Nodes
Phase shifters
Photonics
Photons
Quantum computers
Quantum entanglement
Qubits (quantum computing)
Silicon nitride
title Routing Single Photons from a Trapped Ion Using a Photonic Integrated Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Routing%20Single%20Photons%20from%20a%20Trapped%20Ion%20Using%20a%20Photonic%20Integrated%20Circuit&rft.jtitle=arXiv.org&rft.au=Saha,%20Uday&rft.date=2022-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2640167409%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640167409&rft_id=info:pmid/&rfr_iscdi=true