On the General Position Number of Mycielskian Graphs
The general position problem for graphs was inspired by the no-three-in-line problem from discrete geometry. A set \(S\) of vertices of a graph \(G\) is a \emph{general position set} if no shortest path in \(G\) contains three or more vertices of \(S\). The \emph{general position number} of \(G\) is...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Elias John Thomas Chandran, Ullas Tuite, James Gabriele Di Stefano |
description | The general position problem for graphs was inspired by the no-three-in-line problem from discrete geometry. A set \(S\) of vertices of a graph \(G\) is a \emph{general position set} if no shortest path in \(G\) contains three or more vertices of \(S\). The \emph{general position number} of \(G\) is the number of vertices in a largest general position set. In this paper we investigate the general position numbers of the Mycielskian of graphs. We give tight upper and lower bounds on the general position number of the Mycielskian of a graph \(G\) and investigate the structure of the graphs meeting these bounds. We determine this number exactly for common classes of graphs, including cubic graphs and a wide range of trees. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2640165349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640165349</sourcerecordid><originalsourceid>FETCH-proquest_journals_26401653493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c9TKMlIVXBPzUstSsxRCMgvzizJzM9T8CvNTUotUshPU_CtTM5MzSnOzkzMU3AvSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjMxMDQzNTYxNLY-JUAQAR0DQW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640165349</pqid></control><display><type>article</type><title>On the General Position Number of Mycielskian Graphs</title><source>Free E- Journals</source><creator>Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano</creator><creatorcontrib>Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano</creatorcontrib><description>The general position problem for graphs was inspired by the no-three-in-line problem from discrete geometry. A set \(S\) of vertices of a graph \(G\) is a \emph{general position set} if no shortest path in \(G\) contains three or more vertices of \(S\). The \emph{general position number} of \(G\) is the number of vertices in a largest general position set. In this paper we investigate the general position numbers of the Mycielskian of graphs. We give tight upper and lower bounds on the general position number of the Mycielskian of a graph \(G\) and investigate the structure of the graphs meeting these bounds. We determine this number exactly for common classes of graphs, including cubic graphs and a wide range of trees.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Graph theory ; Graphs ; Lower bounds ; Shortest-path problems ; Trees (mathematics)</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Elias John Thomas</creatorcontrib><creatorcontrib>Chandran, Ullas</creatorcontrib><creatorcontrib>Tuite, James</creatorcontrib><creatorcontrib>Gabriele Di Stefano</creatorcontrib><title>On the General Position Number of Mycielskian Graphs</title><title>arXiv.org</title><description>The general position problem for graphs was inspired by the no-three-in-line problem from discrete geometry. A set \(S\) of vertices of a graph \(G\) is a \emph{general position set} if no shortest path in \(G\) contains three or more vertices of \(S\). The \emph{general position number} of \(G\) is the number of vertices in a largest general position set. In this paper we investigate the general position numbers of the Mycielskian of graphs. We give tight upper and lower bounds on the general position number of the Mycielskian of a graph \(G\) and investigate the structure of the graphs meeting these bounds. We determine this number exactly for common classes of graphs, including cubic graphs and a wide range of trees.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Lower bounds</subject><subject>Shortest-path problems</subject><subject>Trees (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c9TKMlIVXBPzUstSsxRCMgvzizJzM9T8CvNTUotUshPU_CtTM5MzSnOzkzMU3AvSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjMxMDQzNTYxNLY-JUAQAR0DQW</recordid><startdate>20240330</startdate><enddate>20240330</enddate><creator>Elias John Thomas</creator><creator>Chandran, Ullas</creator><creator>Tuite, James</creator><creator>Gabriele Di Stefano</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240330</creationdate><title>On the General Position Number of Mycielskian Graphs</title><author>Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26401653493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Lower bounds</topic><topic>Shortest-path problems</topic><topic>Trees (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Elias John Thomas</creatorcontrib><creatorcontrib>Chandran, Ullas</creatorcontrib><creatorcontrib>Tuite, James</creatorcontrib><creatorcontrib>Gabriele Di Stefano</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elias John Thomas</au><au>Chandran, Ullas</au><au>Tuite, James</au><au>Gabriele Di Stefano</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the General Position Number of Mycielskian Graphs</atitle><jtitle>arXiv.org</jtitle><date>2024-03-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The general position problem for graphs was inspired by the no-three-in-line problem from discrete geometry. A set \(S\) of vertices of a graph \(G\) is a \emph{general position set} if no shortest path in \(G\) contains three or more vertices of \(S\). The \emph{general position number} of \(G\) is the number of vertices in a largest general position set. In this paper we investigate the general position numbers of the Mycielskian of graphs. We give tight upper and lower bounds on the general position number of the Mycielskian of a graph \(G\) and investigate the structure of the graphs meeting these bounds. We determine this number exactly for common classes of graphs, including cubic graphs and a wide range of trees.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2640165349 |
source | Free E- Journals |
subjects | Apexes Graph theory Graphs Lower bounds Shortest-path problems Trees (mathematics) |
title | On the General Position Number of Mycielskian Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20General%20Position%20Number%20of%20Mycielskian%20Graphs&rft.jtitle=arXiv.org&rft.au=Elias%20John%20Thomas&rft.date=2024-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2640165349%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640165349&rft_id=info:pmid/&rfr_iscdi=true |