CO oxidation mediated by Al‐doped ZnO nanoclusters: A first‐principles investigation

Using density functional theory the reaction pathways of CO oxidation mediated by Al‐doped Zn12O12 cluster and its assembled wire‐like (Zn12O12)n=2−4 structures were studied. It is revealed that O2 molecule is chemisorbed over the doped clusters while physisorbed over pristine (Zn12O12)n. Moreover,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2022-05, Vol.122 (9), p.n/a
Hauptverfasser: Esrafili, Mehdi D., Arjomandi Rad, Farzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title International journal of quantum chemistry
container_volume 122
creator Esrafili, Mehdi D.
Arjomandi Rad, Farzad
description Using density functional theory the reaction pathways of CO oxidation mediated by Al‐doped Zn12O12 cluster and its assembled wire‐like (Zn12O12)n=2−4 structures were studied. It is revealed that O2 molecule is chemisorbed over the doped clusters while physisorbed over pristine (Zn12O12)n. Moreover, increasing the size of the nanocluster from AlZn11O12 to (AlZn11O12)4 enhances the O2 adsorption energy, although the amount of increase reduces as the cluster size grows. The adsorption energies of O2 over Al‐doped (Zn12O12)n clusters range from −1.83 to −2.14 eV, which are more negative than those of CO molecule (≈−0.80 eV). The Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) pathways are used to investigate the oxidation mechanisms of the CO molecule. The energy barriers for the rate limiting step in the LH mechanism (i.e., OCOO → CO2 + Oads) are around 0.30 eV, which are substantially lower than the energy barriers in the ER process. The possibility of using Al‐doped Zn12O12 monomer and its assembled wire‐like structures as noble metal‐free catalysts for CO oxidation is explored by density functional theory calculations. The findings demonstrate that the Al‐doped Zn12O12 cluster and its wire‐like structures have an interesting surface activity and catalytic performance in the CO oxidation process.
doi_str_mv 10.1002/qua.26873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640094385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640094385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2973-10f2eddcc1029f57d1b7718e1bc41ea5c031a2310fc8ee6356f8d28ad0b4e99c3</originalsourceid><addsrcrecordid>eNp1kN9KwzAUxoMoOKcXvkHAKy-6nSRt03pXhv9gMAQHw5uQJqlkdG2XdOrufASf0Scxrt56dTic3_m-jw-hSwITAkCn252c0DTj7AiNCOQ8ilOyOkajcIOIp5CdojPv1wCQspSP0Gq2wO2H1bK3bYM3RlvZG43LPS7q788v3XZhe2kWuJFNq-qd743zN7jAlXW-D0TnbKNsVxuPbfNmfG9fD1rn6KSStTcXf3OMlne3z7OHaL64f5wV80jRnLOIQEWN1koRoHmVcE1KzklmSKliYmSigBFJWcBUZkzKkrTKNM2khjI2ea7YGF0Nup1rt7vgL9btzjXBUtA0BshjliWBuh4o5VrvnalEyL2Rbi8IiN_iRChOHIoL7HRg321t9v-D4mlZDB8_z2lyAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640094385</pqid></control><display><type>article</type><title>CO oxidation mediated by Al‐doped ZnO nanoclusters: A first‐principles investigation</title><source>Wiley Online Library All Journals</source><creator>Esrafili, Mehdi D. ; Arjomandi Rad, Farzad</creator><creatorcontrib>Esrafili, Mehdi D. ; Arjomandi Rad, Farzad</creatorcontrib><description>Using density functional theory the reaction pathways of CO oxidation mediated by Al‐doped Zn12O12 cluster and its assembled wire‐like (Zn12O12)n=2−4 structures were studied. It is revealed that O2 molecule is chemisorbed over the doped clusters while physisorbed over pristine (Zn12O12)n. Moreover, increasing the size of the nanocluster from AlZn11O12 to (AlZn11O12)4 enhances the O2 adsorption energy, although the amount of increase reduces as the cluster size grows. The adsorption energies of O2 over Al‐doped (Zn12O12)n clusters range from −1.83 to −2.14 eV, which are more negative than those of CO molecule (≈−0.80 eV). The Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) pathways are used to investigate the oxidation mechanisms of the CO molecule. The energy barriers for the rate limiting step in the LH mechanism (i.e., OCOO → CO2 + Oads) are around 0.30 eV, which are substantially lower than the energy barriers in the ER process. The possibility of using Al‐doped Zn12O12 monomer and its assembled wire‐like structures as noble metal‐free catalysts for CO oxidation is explored by density functional theory calculations. The findings demonstrate that the Al‐doped Zn12O12 cluster and its wire‐like structures have an interesting surface activity and catalytic performance in the CO oxidation process.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.26873</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; Al‐doped Zn12O12 cluster ; Carbon monoxide ; Chemistry ; Clusters ; CO oxidation ; Density functional theory ; DFT ; doping ; mechanism ; Nanoclusters ; Oxidation ; Physical chemistry ; Quantum physics ; wire‐like (Zn12O12)n ; Zinc oxide ; ZnO</subject><ispartof>International journal of quantum chemistry, 2022-05, Vol.122 (9), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2973-10f2eddcc1029f57d1b7718e1bc41ea5c031a2310fc8ee6356f8d28ad0b4e99c3</citedby><cites>FETCH-LOGICAL-c2973-10f2eddcc1029f57d1b7718e1bc41ea5c031a2310fc8ee6356f8d28ad0b4e99c3</cites><orcidid>0000-0002-9866-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.26873$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.26873$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Esrafili, Mehdi D.</creatorcontrib><creatorcontrib>Arjomandi Rad, Farzad</creatorcontrib><title>CO oxidation mediated by Al‐doped ZnO nanoclusters: A first‐principles investigation</title><title>International journal of quantum chemistry</title><description>Using density functional theory the reaction pathways of CO oxidation mediated by Al‐doped Zn12O12 cluster and its assembled wire‐like (Zn12O12)n=2−4 structures were studied. It is revealed that O2 molecule is chemisorbed over the doped clusters while physisorbed over pristine (Zn12O12)n. Moreover, increasing the size of the nanocluster from AlZn11O12 to (AlZn11O12)4 enhances the O2 adsorption energy, although the amount of increase reduces as the cluster size grows. The adsorption energies of O2 over Al‐doped (Zn12O12)n clusters range from −1.83 to −2.14 eV, which are more negative than those of CO molecule (≈−0.80 eV). The Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) pathways are used to investigate the oxidation mechanisms of the CO molecule. The energy barriers for the rate limiting step in the LH mechanism (i.e., OCOO → CO2 + Oads) are around 0.30 eV, which are substantially lower than the energy barriers in the ER process. The possibility of using Al‐doped Zn12O12 monomer and its assembled wire‐like structures as noble metal‐free catalysts for CO oxidation is explored by density functional theory calculations. The findings demonstrate that the Al‐doped Zn12O12 cluster and its wire‐like structures have an interesting surface activity and catalytic performance in the CO oxidation process.</description><subject>Adsorption</subject><subject>Al‐doped Zn12O12 cluster</subject><subject>Carbon monoxide</subject><subject>Chemistry</subject><subject>Clusters</subject><subject>CO oxidation</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>doping</subject><subject>mechanism</subject><subject>Nanoclusters</subject><subject>Oxidation</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>wire‐like (Zn12O12)n</subject><subject>Zinc oxide</subject><subject>ZnO</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAUxoMoOKcXvkHAKy-6nSRt03pXhv9gMAQHw5uQJqlkdG2XdOrufASf0Scxrt56dTic3_m-jw-hSwITAkCn252c0DTj7AiNCOQ8ilOyOkajcIOIp5CdojPv1wCQspSP0Gq2wO2H1bK3bYM3RlvZG43LPS7q788v3XZhe2kWuJFNq-qd743zN7jAlXW-D0TnbKNsVxuPbfNmfG9fD1rn6KSStTcXf3OMlne3z7OHaL64f5wV80jRnLOIQEWN1koRoHmVcE1KzklmSKliYmSigBFJWcBUZkzKkrTKNM2khjI2ea7YGF0Nup1rt7vgL9btzjXBUtA0BshjliWBuh4o5VrvnalEyL2Rbi8IiN_iRChOHIoL7HRg321t9v-D4mlZDB8_z2lyAg</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Esrafili, Mehdi D.</creator><creator>Arjomandi Rad, Farzad</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9866-1880</orcidid></search><sort><creationdate>20220505</creationdate><title>CO oxidation mediated by Al‐doped ZnO nanoclusters: A first‐principles investigation</title><author>Esrafili, Mehdi D. ; Arjomandi Rad, Farzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2973-10f2eddcc1029f57d1b7718e1bc41ea5c031a2310fc8ee6356f8d28ad0b4e99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Al‐doped Zn12O12 cluster</topic><topic>Carbon monoxide</topic><topic>Chemistry</topic><topic>Clusters</topic><topic>CO oxidation</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>doping</topic><topic>mechanism</topic><topic>Nanoclusters</topic><topic>Oxidation</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>wire‐like (Zn12O12)n</topic><topic>Zinc oxide</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esrafili, Mehdi D.</creatorcontrib><creatorcontrib>Arjomandi Rad, Farzad</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esrafili, Mehdi D.</au><au>Arjomandi Rad, Farzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO oxidation mediated by Al‐doped ZnO nanoclusters: A first‐principles investigation</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2022-05-05</date><risdate>2022</risdate><volume>122</volume><issue>9</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Using density functional theory the reaction pathways of CO oxidation mediated by Al‐doped Zn12O12 cluster and its assembled wire‐like (Zn12O12)n=2−4 structures were studied. It is revealed that O2 molecule is chemisorbed over the doped clusters while physisorbed over pristine (Zn12O12)n. Moreover, increasing the size of the nanocluster from AlZn11O12 to (AlZn11O12)4 enhances the O2 adsorption energy, although the amount of increase reduces as the cluster size grows. The adsorption energies of O2 over Al‐doped (Zn12O12)n clusters range from −1.83 to −2.14 eV, which are more negative than those of CO molecule (≈−0.80 eV). The Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) pathways are used to investigate the oxidation mechanisms of the CO molecule. The energy barriers for the rate limiting step in the LH mechanism (i.e., OCOO → CO2 + Oads) are around 0.30 eV, which are substantially lower than the energy barriers in the ER process. The possibility of using Al‐doped Zn12O12 monomer and its assembled wire‐like structures as noble metal‐free catalysts for CO oxidation is explored by density functional theory calculations. The findings demonstrate that the Al‐doped Zn12O12 cluster and its wire‐like structures have an interesting surface activity and catalytic performance in the CO oxidation process.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.26873</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9866-1880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2022-05, Vol.122 (9), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2640094385
source Wiley Online Library All Journals
subjects Adsorption
Al‐doped Zn12O12 cluster
Carbon monoxide
Chemistry
Clusters
CO oxidation
Density functional theory
DFT
doping
mechanism
Nanoclusters
Oxidation
Physical chemistry
Quantum physics
wire‐like (Zn12O12)n
Zinc oxide
ZnO
title CO oxidation mediated by Al‐doped ZnO nanoclusters: A first‐principles investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%20oxidation%20mediated%20by%20Al%E2%80%90doped%20ZnO%20nanoclusters:%20A%20first%E2%80%90principles%20investigation&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Esrafili,%20Mehdi%20D.&rft.date=2022-05-05&rft.volume=122&rft.issue=9&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.26873&rft_dat=%3Cproquest_cross%3E2640094385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640094385&rft_id=info:pmid/&rfr_iscdi=true