A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B
The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a con...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-03, Vol.927 (2), p.134 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 134 |
container_title | The Astrophysical journal |
container_volume | 927 |
creator | Wang, Haiyang S. Lineweaver, Charles H. Quanz, Sascha P. Mojzsis, Stephen J. Ireland, Trevor R. Sossi, Paolo A. Seidler, Fabian Morel, Thierry |
description | The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars—
α
Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“
α
-Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of
38.4
−
5.1
+
4.7
wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO
2
–CH
4
–H
2
O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient
α
-Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes. |
doi_str_mv | 10.3847/1538-4357/ac4e8c |
format | Article |
fullrecord | <record><control><sourceid>proquest_liege</sourceid><recordid>TN_cdi_proquest_journals_2640008168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640008168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF72LgPizjrJSZqmy3HwBoouFMTNIU1TzVCbmnYEfStfxGeyQ0U34ioXvv_nnI-QPc6OhJbZlKdCJ1Kk2dRY6bRdI5Ofr3UyYYzJRInsfpNsdd1i9YQ8n5D5jF6F0tX0xMT-Ken8uyvpTW0a11Pf0P7J0XNT-N4UtaMPoXE0VPTzg85d05tl9HQ2Pd4hG5WpO7f7fW6Tu9OT2_l5cnl9djGfXSZWguyTKs3KgttCCSYrLgEKrlVRQgkghdQslbpkAixwJa3IsmENBVblVVlJNnBim4ixt_bu0WGIhcdXwGD8eF_Wj2gsFg4BlEbQOYN0SO2PqTaGl6XrelyEZWyGQRGUHERorvRAsZGyMXRddBW20T-b-Iac4UowrmziyiaOgofI4Rjxof3t_Ac_-AM37QJzyBCQC4ltWYkvcrGGbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640008168</pqid></control><display><type>article</type><title>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</title><source>IOP Publishing</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Wang, Haiyang S. ; Lineweaver, Charles H. ; Quanz, Sascha P. ; Mojzsis, Stephen J. ; Ireland, Trevor R. ; Sossi, Paolo A. ; Seidler, Fabian ; Morel, Thierry</creator><creatorcontrib>Wang, Haiyang S. ; Lineweaver, Charles H. ; Quanz, Sascha P. ; Mojzsis, Stephen J. ; Ireland, Trevor R. ; Sossi, Paolo A. ; Seidler, Fabian ; Morel, Thierry</creatorcontrib><description>The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars—
α
Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“
α
-Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of
38.4
−
5.1
+
4.7
wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO
2
–CH
4
–H
2
O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient
α
-Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac4e8c</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>1248 ; 2107 ; 2120 ; and Stellar Astrophysics ; Astrophysics ; Astrophysics - Earth and Planetary Astrophysics ; Astrophysics - Solar ; Atmospheric composition ; Atmospheric models ; Aérospatiale, astronomie & astrophysique ; Binary stars ; Carbon dioxide ; Chemical composition ; Circumstellar habitable zone ; Devolatilization ; Diamonds ; Earth ; Exoplanet dynamics ; Extrasolar planets ; Extrasolar rocky planets ; Habitability ; Physical, chemical, mathematical & earth Sciences ; Physique, chimie, mathématiques & sciences de la terre ; Planet formation ; Planetary composition ; Planetary evolution ; Planetary interior ; Planetary interiors ; Planetary mantles ; Planetary systems ; Planets ; Radioisotopes ; Resurfacing ; Silicates ; Solar system ; Space science, astronomy & astrophysics ; Storage capacity ; Surfacing ; Terrestrial planets ; Theoretical models ; Volatile compounds</subject><ispartof>The Astrophysical journal, 2022-03, Vol.927 (2), p.134</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</citedby><cites>FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</cites><orcidid>0000-0001-7617-3889 ; 0000-0002-5556-3279 ; 0000-0002-8176-4816 ; 0000-0001-8618-3343 ; 0000-0003-3829-7412 ; 0000-0003-0000-125X ; 0000-0003-2047-1558 ; 0000-0002-1462-1882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac4e8c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Wang, Haiyang S.</creatorcontrib><creatorcontrib>Lineweaver, Charles H.</creatorcontrib><creatorcontrib>Quanz, Sascha P.</creatorcontrib><creatorcontrib>Mojzsis, Stephen J.</creatorcontrib><creatorcontrib>Ireland, Trevor R.</creatorcontrib><creatorcontrib>Sossi, Paolo A.</creatorcontrib><creatorcontrib>Seidler, Fabian</creatorcontrib><creatorcontrib>Morel, Thierry</creatorcontrib><title>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars—
α
Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“
α
-Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of
38.4
−
5.1
+
4.7
wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO
2
–CH
4
–H
2
O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient
α
-Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes.</description><subject>1248</subject><subject>2107</subject><subject>2120</subject><subject>and Stellar Astrophysics</subject><subject>Astrophysics</subject><subject>Astrophysics - Earth and Planetary Astrophysics</subject><subject>Astrophysics - Solar</subject><subject>Atmospheric composition</subject><subject>Atmospheric models</subject><subject>Aérospatiale, astronomie & astrophysique</subject><subject>Binary stars</subject><subject>Carbon dioxide</subject><subject>Chemical composition</subject><subject>Circumstellar habitable zone</subject><subject>Devolatilization</subject><subject>Diamonds</subject><subject>Earth</subject><subject>Exoplanet dynamics</subject><subject>Extrasolar planets</subject><subject>Extrasolar rocky planets</subject><subject>Habitability</subject><subject>Physical, chemical, mathematical & earth Sciences</subject><subject>Physique, chimie, mathématiques & sciences de la terre</subject><subject>Planet formation</subject><subject>Planetary composition</subject><subject>Planetary evolution</subject><subject>Planetary interior</subject><subject>Planetary interiors</subject><subject>Planetary mantles</subject><subject>Planetary systems</subject><subject>Planets</subject><subject>Radioisotopes</subject><subject>Resurfacing</subject><subject>Silicates</subject><subject>Solar system</subject><subject>Space science, astronomy & astrophysics</subject><subject>Storage capacity</subject><subject>Surfacing</subject><subject>Terrestrial planets</subject><subject>Theoretical models</subject><subject>Volatile compounds</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kMtKxDAUhoMoOF72LgPizjrJSZqmy3HwBoouFMTNIU1TzVCbmnYEfStfxGeyQ0U34ioXvv_nnI-QPc6OhJbZlKdCJ1Kk2dRY6bRdI5Ofr3UyYYzJRInsfpNsdd1i9YQ8n5D5jF6F0tX0xMT-Ken8uyvpTW0a11Pf0P7J0XNT-N4UtaMPoXE0VPTzg85d05tl9HQ2Pd4hG5WpO7f7fW6Tu9OT2_l5cnl9djGfXSZWguyTKs3KgttCCSYrLgEKrlVRQgkghdQslbpkAixwJa3IsmENBVblVVlJNnBim4ixt_bu0WGIhcdXwGD8eF_Wj2gsFg4BlEbQOYN0SO2PqTaGl6XrelyEZWyGQRGUHERorvRAsZGyMXRddBW20T-b-Iac4UowrmziyiaOgofI4Rjxof3t_Ac_-AM37QJzyBCQC4ltWYkvcrGGbg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Haiyang S.</creator><creator>Lineweaver, Charles H.</creator><creator>Quanz, Sascha P.</creator><creator>Mojzsis, Stephen J.</creator><creator>Ireland, Trevor R.</creator><creator>Sossi, Paolo A.</creator><creator>Seidler, Fabian</creator><creator>Morel, Thierry</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0001-7617-3889</orcidid><orcidid>https://orcid.org/0000-0002-5556-3279</orcidid><orcidid>https://orcid.org/0000-0002-8176-4816</orcidid><orcidid>https://orcid.org/0000-0001-8618-3343</orcidid><orcidid>https://orcid.org/0000-0003-3829-7412</orcidid><orcidid>https://orcid.org/0000-0003-0000-125X</orcidid><orcidid>https://orcid.org/0000-0003-2047-1558</orcidid><orcidid>https://orcid.org/0000-0002-1462-1882</orcidid></search><sort><creationdate>20220301</creationdate><title>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</title><author>Wang, Haiyang S. ; Lineweaver, Charles H. ; Quanz, Sascha P. ; Mojzsis, Stephen J. ; Ireland, Trevor R. ; Sossi, Paolo A. ; Seidler, Fabian ; Morel, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1248</topic><topic>2107</topic><topic>2120</topic><topic>and Stellar Astrophysics</topic><topic>Astrophysics</topic><topic>Astrophysics - Earth and Planetary Astrophysics</topic><topic>Astrophysics - Solar</topic><topic>Atmospheric composition</topic><topic>Atmospheric models</topic><topic>Aérospatiale, astronomie & astrophysique</topic><topic>Binary stars</topic><topic>Carbon dioxide</topic><topic>Chemical composition</topic><topic>Circumstellar habitable zone</topic><topic>Devolatilization</topic><topic>Diamonds</topic><topic>Earth</topic><topic>Exoplanet dynamics</topic><topic>Extrasolar planets</topic><topic>Extrasolar rocky planets</topic><topic>Habitability</topic><topic>Physical, chemical, mathematical & earth Sciences</topic><topic>Physique, chimie, mathématiques & sciences de la terre</topic><topic>Planet formation</topic><topic>Planetary composition</topic><topic>Planetary evolution</topic><topic>Planetary interior</topic><topic>Planetary interiors</topic><topic>Planetary mantles</topic><topic>Planetary systems</topic><topic>Planets</topic><topic>Radioisotopes</topic><topic>Resurfacing</topic><topic>Silicates</topic><topic>Solar system</topic><topic>Space science, astronomy & astrophysics</topic><topic>Storage capacity</topic><topic>Surfacing</topic><topic>Terrestrial planets</topic><topic>Theoretical models</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyang S.</creatorcontrib><creatorcontrib>Lineweaver, Charles H.</creatorcontrib><creatorcontrib>Quanz, Sascha P.</creatorcontrib><creatorcontrib>Mojzsis, Stephen J.</creatorcontrib><creatorcontrib>Ireland, Trevor R.</creatorcontrib><creatorcontrib>Sossi, Paolo A.</creatorcontrib><creatorcontrib>Seidler, Fabian</creatorcontrib><creatorcontrib>Morel, Thierry</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyang S.</au><au>Lineweaver, Charles H.</au><au>Quanz, Sascha P.</au><au>Mojzsis, Stephen J.</au><au>Ireland, Trevor R.</au><au>Sossi, Paolo A.</au><au>Seidler, Fabian</au><au>Morel, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>927</volume><issue>2</issue><spage>134</spage><pages>134-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars—
α
Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“
α
-Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of
38.4
−
5.1
+
4.7
wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO
2
–CH
4
–H
2
O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient
α
-Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac4e8c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7617-3889</orcidid><orcidid>https://orcid.org/0000-0002-5556-3279</orcidid><orcidid>https://orcid.org/0000-0002-8176-4816</orcidid><orcidid>https://orcid.org/0000-0001-8618-3343</orcidid><orcidid>https://orcid.org/0000-0003-3829-7412</orcidid><orcidid>https://orcid.org/0000-0003-0000-125X</orcidid><orcidid>https://orcid.org/0000-0003-2047-1558</orcidid><orcidid>https://orcid.org/0000-0002-1462-1882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-03, Vol.927 (2), p.134 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2640008168 |
source | IOP Publishing; Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | 1248 2107 2120 and Stellar Astrophysics Astrophysics Astrophysics - Earth and Planetary Astrophysics Astrophysics - Solar Atmospheric composition Atmospheric models Aérospatiale, astronomie & astrophysique Binary stars Carbon dioxide Chemical composition Circumstellar habitable zone Devolatilization Diamonds Earth Exoplanet dynamics Extrasolar planets Extrasolar rocky planets Habitability Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Planet formation Planetary composition Planetary evolution Planetary interior Planetary interiors Planetary mantles Planetary systems Planets Radioisotopes Resurfacing Silicates Solar system Space science, astronomy & astrophysics Storage capacity Surfacing Terrestrial planets Theoretical models Volatile compounds |
title | A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_liege&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20Earth-sized%20Planet%20in%20the%20Habitable%20Zone%20of%20%CE%B1%20Centauri%20A/B&rft.jtitle=The%20Astrophysical%20journal&rft.au=Wang,%20Haiyang%20S.&rft.date=2022-03-01&rft.volume=927&rft.issue=2&rft.spage=134&rft.pages=134-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac4e8c&rft_dat=%3Cproquest_liege%3E2640008168%3C/proquest_liege%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640008168&rft_id=info:pmid/&rfr_iscdi=true |