A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B

The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-03, Vol.927 (2), p.134
Hauptverfasser: Wang, Haiyang S., Lineweaver, Charles H., Quanz, Sascha P., Mojzsis, Stephen J., Ireland, Trevor R., Sossi, Paolo A., Seidler, Fabian, Morel, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 134
container_title The Astrophysical journal
container_volume 927
creator Wang, Haiyang S.
Lineweaver, Charles H.
Quanz, Sascha P.
Mojzsis, Stephen J.
Ireland, Trevor R.
Sossi, Paolo A.
Seidler, Fabian
Morel, Thierry
description The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars— α Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“ α -Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of 38.4 − 5.1 + 4.7 wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO 2 –CH 4 –H 2 O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient α -Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes.
doi_str_mv 10.3847/1538-4357/ac4e8c
format Article
fullrecord <record><control><sourceid>proquest_liege</sourceid><recordid>TN_cdi_proquest_journals_2640008168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640008168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF72LgPizjrJSZqmy3HwBoouFMTNIU1TzVCbmnYEfStfxGeyQ0U34ioXvv_nnI-QPc6OhJbZlKdCJ1Kk2dRY6bRdI5Ofr3UyYYzJRInsfpNsdd1i9YQ8n5D5jF6F0tX0xMT-Ken8uyvpTW0a11Pf0P7J0XNT-N4UtaMPoXE0VPTzg85d05tl9HQ2Pd4hG5WpO7f7fW6Tu9OT2_l5cnl9djGfXSZWguyTKs3KgttCCSYrLgEKrlVRQgkghdQslbpkAixwJa3IsmENBVblVVlJNnBim4ixt_bu0WGIhcdXwGD8eF_Wj2gsFg4BlEbQOYN0SO2PqTaGl6XrelyEZWyGQRGUHERorvRAsZGyMXRddBW20T-b-Iac4UowrmziyiaOgofI4Rjxof3t_Ac_-AM37QJzyBCQC4ltWYkvcrGGbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640008168</pqid></control><display><type>article</type><title>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</title><source>IOP Publishing</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Wang, Haiyang S. ; Lineweaver, Charles H. ; Quanz, Sascha P. ; Mojzsis, Stephen J. ; Ireland, Trevor R. ; Sossi, Paolo A. ; Seidler, Fabian ; Morel, Thierry</creator><creatorcontrib>Wang, Haiyang S. ; Lineweaver, Charles H. ; Quanz, Sascha P. ; Mojzsis, Stephen J. ; Ireland, Trevor R. ; Sossi, Paolo A. ; Seidler, Fabian ; Morel, Thierry</creatorcontrib><description>The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars— α Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“ α -Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of 38.4 − 5.1 + 4.7 wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO 2 –CH 4 –H 2 O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient α -Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac4e8c</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>1248 ; 2107 ; 2120 ; and Stellar Astrophysics ; Astrophysics ; Astrophysics - Earth and Planetary Astrophysics ; Astrophysics - Solar ; Atmospheric composition ; Atmospheric models ; Aérospatiale, astronomie &amp; astrophysique ; Binary stars ; Carbon dioxide ; Chemical composition ; Circumstellar habitable zone ; Devolatilization ; Diamonds ; Earth ; Exoplanet dynamics ; Extrasolar planets ; Extrasolar rocky planets ; Habitability ; Physical, chemical, mathematical &amp; earth Sciences ; Physique, chimie, mathématiques &amp; sciences de la terre ; Planet formation ; Planetary composition ; Planetary evolution ; Planetary interior ; Planetary interiors ; Planetary mantles ; Planetary systems ; Planets ; Radioisotopes ; Resurfacing ; Silicates ; Solar system ; Space science, astronomy &amp; astrophysics ; Storage capacity ; Surfacing ; Terrestrial planets ; Theoretical models ; Volatile compounds</subject><ispartof>The Astrophysical journal, 2022-03, Vol.927 (2), p.134</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</citedby><cites>FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</cites><orcidid>0000-0001-7617-3889 ; 0000-0002-5556-3279 ; 0000-0002-8176-4816 ; 0000-0001-8618-3343 ; 0000-0003-3829-7412 ; 0000-0003-0000-125X ; 0000-0003-2047-1558 ; 0000-0002-1462-1882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac4e8c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Wang, Haiyang S.</creatorcontrib><creatorcontrib>Lineweaver, Charles H.</creatorcontrib><creatorcontrib>Quanz, Sascha P.</creatorcontrib><creatorcontrib>Mojzsis, Stephen J.</creatorcontrib><creatorcontrib>Ireland, Trevor R.</creatorcontrib><creatorcontrib>Sossi, Paolo A.</creatorcontrib><creatorcontrib>Seidler, Fabian</creatorcontrib><creatorcontrib>Morel, Thierry</creatorcontrib><title>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars— α Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“ α -Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of 38.4 − 5.1 + 4.7 wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO 2 –CH 4 –H 2 O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient α -Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes.</description><subject>1248</subject><subject>2107</subject><subject>2120</subject><subject>and Stellar Astrophysics</subject><subject>Astrophysics</subject><subject>Astrophysics - Earth and Planetary Astrophysics</subject><subject>Astrophysics - Solar</subject><subject>Atmospheric composition</subject><subject>Atmospheric models</subject><subject>Aérospatiale, astronomie &amp; astrophysique</subject><subject>Binary stars</subject><subject>Carbon dioxide</subject><subject>Chemical composition</subject><subject>Circumstellar habitable zone</subject><subject>Devolatilization</subject><subject>Diamonds</subject><subject>Earth</subject><subject>Exoplanet dynamics</subject><subject>Extrasolar planets</subject><subject>Extrasolar rocky planets</subject><subject>Habitability</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><subject>Planet formation</subject><subject>Planetary composition</subject><subject>Planetary evolution</subject><subject>Planetary interior</subject><subject>Planetary interiors</subject><subject>Planetary mantles</subject><subject>Planetary systems</subject><subject>Planets</subject><subject>Radioisotopes</subject><subject>Resurfacing</subject><subject>Silicates</subject><subject>Solar system</subject><subject>Space science, astronomy &amp; astrophysics</subject><subject>Storage capacity</subject><subject>Surfacing</subject><subject>Terrestrial planets</subject><subject>Theoretical models</subject><subject>Volatile compounds</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kMtKxDAUhoMoOF72LgPizjrJSZqmy3HwBoouFMTNIU1TzVCbmnYEfStfxGeyQ0U34ioXvv_nnI-QPc6OhJbZlKdCJ1Kk2dRY6bRdI5Ofr3UyYYzJRInsfpNsdd1i9YQ8n5D5jF6F0tX0xMT-Ken8uyvpTW0a11Pf0P7J0XNT-N4UtaMPoXE0VPTzg85d05tl9HQ2Pd4hG5WpO7f7fW6Tu9OT2_l5cnl9djGfXSZWguyTKs3KgttCCSYrLgEKrlVRQgkghdQslbpkAixwJa3IsmENBVblVVlJNnBim4ixt_bu0WGIhcdXwGD8eF_Wj2gsFg4BlEbQOYN0SO2PqTaGl6XrelyEZWyGQRGUHERorvRAsZGyMXRddBW20T-b-Iac4UowrmziyiaOgofI4Rjxof3t_Ac_-AM37QJzyBCQC4ltWYkvcrGGbg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Haiyang S.</creator><creator>Lineweaver, Charles H.</creator><creator>Quanz, Sascha P.</creator><creator>Mojzsis, Stephen J.</creator><creator>Ireland, Trevor R.</creator><creator>Sossi, Paolo A.</creator><creator>Seidler, Fabian</creator><creator>Morel, Thierry</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0001-7617-3889</orcidid><orcidid>https://orcid.org/0000-0002-5556-3279</orcidid><orcidid>https://orcid.org/0000-0002-8176-4816</orcidid><orcidid>https://orcid.org/0000-0001-8618-3343</orcidid><orcidid>https://orcid.org/0000-0003-3829-7412</orcidid><orcidid>https://orcid.org/0000-0003-0000-125X</orcidid><orcidid>https://orcid.org/0000-0003-2047-1558</orcidid><orcidid>https://orcid.org/0000-0002-1462-1882</orcidid></search><sort><creationdate>20220301</creationdate><title>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</title><author>Wang, Haiyang S. ; Lineweaver, Charles H. ; Quanz, Sascha P. ; Mojzsis, Stephen J. ; Ireland, Trevor R. ; Sossi, Paolo A. ; Seidler, Fabian ; Morel, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f57db1cb6304f1422b186bd2d2243480548d032c2164c377c4e62c69fdf40bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1248</topic><topic>2107</topic><topic>2120</topic><topic>and Stellar Astrophysics</topic><topic>Astrophysics</topic><topic>Astrophysics - Earth and Planetary Astrophysics</topic><topic>Astrophysics - Solar</topic><topic>Atmospheric composition</topic><topic>Atmospheric models</topic><topic>Aérospatiale, astronomie &amp; astrophysique</topic><topic>Binary stars</topic><topic>Carbon dioxide</topic><topic>Chemical composition</topic><topic>Circumstellar habitable zone</topic><topic>Devolatilization</topic><topic>Diamonds</topic><topic>Earth</topic><topic>Exoplanet dynamics</topic><topic>Extrasolar planets</topic><topic>Extrasolar rocky planets</topic><topic>Habitability</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><topic>Planet formation</topic><topic>Planetary composition</topic><topic>Planetary evolution</topic><topic>Planetary interior</topic><topic>Planetary interiors</topic><topic>Planetary mantles</topic><topic>Planetary systems</topic><topic>Planets</topic><topic>Radioisotopes</topic><topic>Resurfacing</topic><topic>Silicates</topic><topic>Solar system</topic><topic>Space science, astronomy &amp; astrophysics</topic><topic>Storage capacity</topic><topic>Surfacing</topic><topic>Terrestrial planets</topic><topic>Theoretical models</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyang S.</creatorcontrib><creatorcontrib>Lineweaver, Charles H.</creatorcontrib><creatorcontrib>Quanz, Sascha P.</creatorcontrib><creatorcontrib>Mojzsis, Stephen J.</creatorcontrib><creatorcontrib>Ireland, Trevor R.</creatorcontrib><creatorcontrib>Sossi, Paolo A.</creatorcontrib><creatorcontrib>Seidler, Fabian</creatorcontrib><creatorcontrib>Morel, Thierry</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyang S.</au><au>Lineweaver, Charles H.</au><au>Quanz, Sascha P.</au><au>Mojzsis, Stephen J.</au><au>Ireland, Trevor R.</au><au>Sossi, Paolo A.</au><au>Seidler, Fabian</au><au>Morel, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>927</volume><issue>2</issue><spage>134</spage><pages>134-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>The bulk chemical composition and interior structure of rocky exoplanets are fundamentally important to understand their long-term evolution and potential habitability. Observations of the chemical compositions of solar system rocky bodies and of other planetary systems have increasingly shown a concordant picture that the chemical composition of rocky planets reflects that of their host stars for refractory elements, whereas this expression breaks down for volatiles. This behavior is explained by devolatilization during planetary formation and early evolution. Here we apply a devolatilization model calibrated with solar system bodies to the chemical composition of our nearest Sun-like stars— α Centauri A and B—to estimate the bulk composition of any habitable-zone rocky planet in this binary system (“ α -Cen-Earth”). Through further modeling of likely planetary interiors and early atmospheres, we find that, compared to Earth, such a planet is expected to have (i) a reduced (primitive) mantle that is similarly dominated by silicates, albeit enriched in carbon-bearing species (graphite/diamond); (ii) a slightly larger iron core, with a core mass fraction of 38.4 − 5.1 + 4.7 wt% (see Earth’s 32.5 ± 0.3 wt%); (iii) an equivalent water-storage capacity; and (iv) a CO 2 –CH 4 –H 2 O-dominated early atmosphere that resembles that of Archean Earth. Further taking into account its ∼25% lower intrinsic radiogenic heating from long-lived radionuclides, an ancient α -Cen-Earth (∼1.5–2.5 Gyr older than Earth) is expected to have less efficient mantle convection and planetary resurfacing, with a potentially prolonged history of stagnant-lid regimes.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac4e8c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7617-3889</orcidid><orcidid>https://orcid.org/0000-0002-5556-3279</orcidid><orcidid>https://orcid.org/0000-0002-8176-4816</orcidid><orcidid>https://orcid.org/0000-0001-8618-3343</orcidid><orcidid>https://orcid.org/0000-0003-3829-7412</orcidid><orcidid>https://orcid.org/0000-0003-0000-125X</orcidid><orcidid>https://orcid.org/0000-0003-2047-1558</orcidid><orcidid>https://orcid.org/0000-0002-1462-1882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-03, Vol.927 (2), p.134
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_journals_2640008168
source IOP Publishing; Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects 1248
2107
2120
and Stellar Astrophysics
Astrophysics
Astrophysics - Earth and Planetary Astrophysics
Astrophysics - Solar
Atmospheric composition
Atmospheric models
Aérospatiale, astronomie & astrophysique
Binary stars
Carbon dioxide
Chemical composition
Circumstellar habitable zone
Devolatilization
Diamonds
Earth
Exoplanet dynamics
Extrasolar planets
Extrasolar rocky planets
Habitability
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Planet formation
Planetary composition
Planetary evolution
Planetary interior
Planetary interiors
Planetary mantles
Planetary systems
Planets
Radioisotopes
Resurfacing
Silicates
Solar system
Space science, astronomy & astrophysics
Storage capacity
Surfacing
Terrestrial planets
Theoretical models
Volatile compounds
title A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_liege&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20Earth-sized%20Planet%20in%20the%20Habitable%20Zone%20of%20%CE%B1%20Centauri%20A/B&rft.jtitle=The%20Astrophysical%20journal&rft.au=Wang,%20Haiyang%20S.&rft.date=2022-03-01&rft.volume=927&rft.issue=2&rft.spage=134&rft.pages=134-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac4e8c&rft_dat=%3Cproquest_liege%3E2640008168%3C/proquest_liege%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640008168&rft_id=info:pmid/&rfr_iscdi=true