Modularized Electrosurgical System With a Hybrid CPU-FPGA Chip for Real-Time Thermal Lesion Approximation

Electrosurgery that ablates the target tissues such as tumor and nerve cells using radio-frequency (RF) heating has been widely employed in the medical industry. Although the thermal lesion plays a key role in the efficacy and safety for this method, it is still difficult to identify the depth and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-10
Hauptverfasser: Baik, Jinhwan, Lee, Sangyong, Yang, Sunchoel, Park, Sung-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Baik, Jinhwan
Lee, Sangyong
Yang, Sunchoel
Park, Sung-Min
description Electrosurgery that ablates the target tissues such as tumor and nerve cells using radio-frequency (RF) heating has been widely employed in the medical industry. Although the thermal lesion plays a key role in the efficacy and safety for this method, it is still difficult to identify the depth and size of the lesion during the treatment using recent electrosurgical systems. Herein, we propose a novel electrosurgical instrument for real-time approximation of thermal lesions during RF ablation (RFA). Thermal lesions were numerically calculated based on theoretical thermal models using a hybrid central processing unit (CPU)-field-programmable gate array (FPGA) chip. Other functions such as RF control, voltage, and temperature measurements were implemented using RF components in a modular manner. It can solve voltage distribution in 6 ms by repeating the calculation 5000 times and can anticipate the thermal lesion in 15.6 ms within a time step in real-time simulations. As a real-world validation, the feasibility of the system was demonstrated through an animal study using a swine model. The system is modularly designed using off-the-shelf chips and RF components to improve flexibility and scalability. It can be easily compatible with existing RF surgical applications and medical imaging devices and can improve the efficacy of RFA therapy.
doi_str_mv 10.1109/TIM.2022.3154817
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2639933404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721849</ieee_id><sourcerecordid>2639933404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-fd6c91837cfb76eff61bec55e4237df4cebed3e5f100a1dd213b01bd4b2207073</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6n7ld3kWEJtCy0WTfEYkuys3ZI0cZOA9a93S4unYeC9efN-CD1SMqGUxC_pcj1hhLEJp6GIqLpCIxqGKoilZNdoRAiNgliE8hbddd2eEKKkUCNk140eqtzZX9B4VkHZu6Yb3Jct8wp_HLseavxp-x3O8eJYOKtxstkGr5v5FCc722LTOPwOeRWktgac7sDV3riCzjYHPG1b1_zYOu_9do9uTF518HCZY7R9naXJIli9zZfJdBWULJJ9YLQsYxpxVZpCSTBG0gLKMATBuNJGlFCA5hAaSkhOtWaUF4QWWhSMEUUUH6Pn812f_T1A12f7ZnAHH5kxyeOYc0GEV5GzqvR9Owcma51_1B0zSrIT0MwDzU5AswtQb3k6WywA_MtjxWgkYv4HdfVx8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639933404</pqid></control><display><type>article</type><title>Modularized Electrosurgical System With a Hybrid CPU-FPGA Chip for Real-Time Thermal Lesion Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Baik, Jinhwan ; Lee, Sangyong ; Yang, Sunchoel ; Park, Sung-Min</creator><creatorcontrib>Baik, Jinhwan ; Lee, Sangyong ; Yang, Sunchoel ; Park, Sung-Min</creatorcontrib><description>Electrosurgery that ablates the target tissues such as tumor and nerve cells using radio-frequency (RF) heating has been widely employed in the medical industry. Although the thermal lesion plays a key role in the efficacy and safety for this method, it is still difficult to identify the depth and size of the lesion during the treatment using recent electrosurgical systems. Herein, we propose a novel electrosurgical instrument for real-time approximation of thermal lesions during RF ablation (RFA). Thermal lesions were numerically calculated based on theoretical thermal models using a hybrid central processing unit (CPU)-field-programmable gate array (FPGA) chip. Other functions such as RF control, voltage, and temperature measurements were implemented using RF components in a modular manner. It can solve voltage distribution in 6 ms by repeating the calculation 5000 times and can anticipate the thermal lesion in 15.6 ms within a time step in real-time simulations. As a real-world validation, the feasibility of the system was demonstrated through an animal study using a swine model. The system is modularly designed using off-the-shelf chips and RF components to improve flexibility and scalability. It can be easily compatible with existing RF surgical applications and medical imaging devices and can improve the efficacy of RFA therapy.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3154817</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Approximation ; Arteries ; Central processing units ; Cooling ; CPUs ; Electric potential ; Electrodes ; Field programmable gate arrays ; Field-programmable gate array (FPGA) ; finite-difference time domain (FDTD) ; Hybrid systems ; Lesions ; Mathematical analysis ; Mathematical models ; Medical imaging ; Modular design ; Numerical models ; Radio frequency ; radio-frequency ablation (RFA) ; Real time ; real-time numerical simulation ; renal denervation ; Thermal analysis ; Voltage</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-fd6c91837cfb76eff61bec55e4237df4cebed3e5f100a1dd213b01bd4b2207073</cites><orcidid>0000-0002-5481-6510 ; 0000-0002-8359-8110 ; 0000-0002-9463-1932 ; 0000-0002-8848-6062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721849$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Baik, Jinhwan</creatorcontrib><creatorcontrib>Lee, Sangyong</creatorcontrib><creatorcontrib>Yang, Sunchoel</creatorcontrib><creatorcontrib>Park, Sung-Min</creatorcontrib><title>Modularized Electrosurgical System With a Hybrid CPU-FPGA Chip for Real-Time Thermal Lesion Approximation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Electrosurgery that ablates the target tissues such as tumor and nerve cells using radio-frequency (RF) heating has been widely employed in the medical industry. Although the thermal lesion plays a key role in the efficacy and safety for this method, it is still difficult to identify the depth and size of the lesion during the treatment using recent electrosurgical systems. Herein, we propose a novel electrosurgical instrument for real-time approximation of thermal lesions during RF ablation (RFA). Thermal lesions were numerically calculated based on theoretical thermal models using a hybrid central processing unit (CPU)-field-programmable gate array (FPGA) chip. Other functions such as RF control, voltage, and temperature measurements were implemented using RF components in a modular manner. It can solve voltage distribution in 6 ms by repeating the calculation 5000 times and can anticipate the thermal lesion in 15.6 ms within a time step in real-time simulations. As a real-world validation, the feasibility of the system was demonstrated through an animal study using a swine model. The system is modularly designed using off-the-shelf chips and RF components to improve flexibility and scalability. It can be easily compatible with existing RF surgical applications and medical imaging devices and can improve the efficacy of RFA therapy.</description><subject>Ablation</subject><subject>Approximation</subject><subject>Arteries</subject><subject>Central processing units</subject><subject>Cooling</subject><subject>CPUs</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Field programmable gate arrays</subject><subject>Field-programmable gate array (FPGA)</subject><subject>finite-difference time domain (FDTD)</subject><subject>Hybrid systems</subject><subject>Lesions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Modular design</subject><subject>Numerical models</subject><subject>Radio frequency</subject><subject>radio-frequency ablation (RFA)</subject><subject>Real time</subject><subject>real-time numerical simulation</subject><subject>renal denervation</subject><subject>Thermal analysis</subject><subject>Voltage</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6n7ld3kWEJtCy0WTfEYkuys3ZI0cZOA9a93S4unYeC9efN-CD1SMqGUxC_pcj1hhLEJp6GIqLpCIxqGKoilZNdoRAiNgliE8hbddd2eEKKkUCNk140eqtzZX9B4VkHZu6Yb3Jct8wp_HLseavxp-x3O8eJYOKtxstkGr5v5FCc722LTOPwOeRWktgac7sDV3riCzjYHPG1b1_zYOu_9do9uTF518HCZY7R9naXJIli9zZfJdBWULJJ9YLQsYxpxVZpCSTBG0gLKMATBuNJGlFCA5hAaSkhOtWaUF4QWWhSMEUUUH6Pn812f_T1A12f7ZnAHH5kxyeOYc0GEV5GzqvR9Owcma51_1B0zSrIT0MwDzU5AswtQb3k6WywA_MtjxWgkYv4HdfVx8w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Baik, Jinhwan</creator><creator>Lee, Sangyong</creator><creator>Yang, Sunchoel</creator><creator>Park, Sung-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5481-6510</orcidid><orcidid>https://orcid.org/0000-0002-8359-8110</orcidid><orcidid>https://orcid.org/0000-0002-9463-1932</orcidid><orcidid>https://orcid.org/0000-0002-8848-6062</orcidid></search><sort><creationdate>2022</creationdate><title>Modularized Electrosurgical System With a Hybrid CPU-FPGA Chip for Real-Time Thermal Lesion Approximation</title><author>Baik, Jinhwan ; Lee, Sangyong ; Yang, Sunchoel ; Park, Sung-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-fd6c91837cfb76eff61bec55e4237df4cebed3e5f100a1dd213b01bd4b2207073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Approximation</topic><topic>Arteries</topic><topic>Central processing units</topic><topic>Cooling</topic><topic>CPUs</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Field programmable gate arrays</topic><topic>Field-programmable gate array (FPGA)</topic><topic>finite-difference time domain (FDTD)</topic><topic>Hybrid systems</topic><topic>Lesions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Modular design</topic><topic>Numerical models</topic><topic>Radio frequency</topic><topic>radio-frequency ablation (RFA)</topic><topic>Real time</topic><topic>real-time numerical simulation</topic><topic>renal denervation</topic><topic>Thermal analysis</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baik, Jinhwan</creatorcontrib><creatorcontrib>Lee, Sangyong</creatorcontrib><creatorcontrib>Yang, Sunchoel</creatorcontrib><creatorcontrib>Park, Sung-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baik, Jinhwan</au><au>Lee, Sangyong</au><au>Yang, Sunchoel</au><au>Park, Sung-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularized Electrosurgical System With a Hybrid CPU-FPGA Chip for Real-Time Thermal Lesion Approximation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Electrosurgery that ablates the target tissues such as tumor and nerve cells using radio-frequency (RF) heating has been widely employed in the medical industry. Although the thermal lesion plays a key role in the efficacy and safety for this method, it is still difficult to identify the depth and size of the lesion during the treatment using recent electrosurgical systems. Herein, we propose a novel electrosurgical instrument for real-time approximation of thermal lesions during RF ablation (RFA). Thermal lesions were numerically calculated based on theoretical thermal models using a hybrid central processing unit (CPU)-field-programmable gate array (FPGA) chip. Other functions such as RF control, voltage, and temperature measurements were implemented using RF components in a modular manner. It can solve voltage distribution in 6 ms by repeating the calculation 5000 times and can anticipate the thermal lesion in 15.6 ms within a time step in real-time simulations. As a real-world validation, the feasibility of the system was demonstrated through an animal study using a swine model. The system is modularly designed using off-the-shelf chips and RF components to improve flexibility and scalability. It can be easily compatible with existing RF surgical applications and medical imaging devices and can improve the efficacy of RFA therapy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3154817</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5481-6510</orcidid><orcidid>https://orcid.org/0000-0002-8359-8110</orcidid><orcidid>https://orcid.org/0000-0002-9463-1932</orcidid><orcidid>https://orcid.org/0000-0002-8848-6062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2639933404
source IEEE Electronic Library (IEL)
subjects Ablation
Approximation
Arteries
Central processing units
Cooling
CPUs
Electric potential
Electrodes
Field programmable gate arrays
Field-programmable gate array (FPGA)
finite-difference time domain (FDTD)
Hybrid systems
Lesions
Mathematical analysis
Mathematical models
Medical imaging
Modular design
Numerical models
Radio frequency
radio-frequency ablation (RFA)
Real time
real-time numerical simulation
renal denervation
Thermal analysis
Voltage
title Modularized Electrosurgical System With a Hybrid CPU-FPGA Chip for Real-Time Thermal Lesion Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularized%20Electrosurgical%20System%20With%20a%20Hybrid%20CPU-FPGA%20Chip%20for%20Real-Time%20Thermal%20Lesion%20Approximation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Baik,%20Jinhwan&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3154817&rft_dat=%3Cproquest_ieee_%3E2639933404%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639933404&rft_id=info:pmid/&rft_ieee_id=9721849&rfr_iscdi=true