A Closed-Loop Reconfigurable Analog Baseband Circuitry With Open-Loop Tunable Notch Filters to Improve Receiver Tx Leakage and Close-in Blocker Tolerance

This brief presents an analog baseband (ABB) circuit in a 0.13 \boldsymbol{\mu }\text{m} SiGe technology for transmitter leakage cancellation and close-in blocker suppressions in fully duplex (FD) frequency-modulated continuous-wave (FMCW) radar. This ABB comprises a programmable gain amplifier (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-03, Vol.69 (3), p.839-843
Hauptverfasser: Cheng, Xu, Chen, Feng-Jun, Zhang, Liang, Gao, Hao, Han, Jiang-An, Han, Jing-Yu, Yu, Yang, Deng, Xian-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 843
container_issue 3
container_start_page 839
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 69
creator Cheng, Xu
Chen, Feng-Jun
Zhang, Liang
Gao, Hao
Han, Jiang-An
Han, Jing-Yu
Yu, Yang
Deng, Xian-Jin
description This brief presents an analog baseband (ABB) circuit in a 0.13 \boldsymbol{\mu }\text{m} SiGe technology for transmitter leakage cancellation and close-in blocker suppressions in fully duplex (FD) frequency-modulated continuous-wave (FMCW) radar. This ABB comprises a programmable gain amplifier (PGA) and a cascaded LPF/Notch hybrid, which incorporates a closed-loop (CL) reconfigurable low-pass filter (LPF) and an open-loop (OL) tunable notch filter. The adopted key topologies include active-R-C bi-quads and \text{G}_{\mathrm{ m}} -C ones. In an FD FMCW transceiver, Tx leakage and close-in blockers are difficult to be eliminated in the RF domain, especially when leakage/blockers are very close to desired signals or even in-band in the frequency domain. This LPF/notch hybrid is proposed to solve this issue. The LPF and PGA provide bandwidth (BW)/gain programmability, while the \text{G}_{\mathrm{ m}} -C bi-quad provides adaptable center frequency for a notch filter. With this adaption, the notch filter could be adjusted to match the leakage/blocker offset frequency. Thus, digitally discrete programmability and analog continuous tuning capability are combined in this solution for improving the overall front-end interference robustness without de-sensitizing the Rx. Furthermore, the order of LPF/notch hybrid is programmable from 2 to 10 with a step of 2 for different rejection levels of interferences. The measured chip achieves a −3dB bandwidth of 6 ~ 21 MHz with 4-bit digital control and 1 MHz/step programmability, and a voltage gain of 0 ~ 70 dB with 9-bit digital control (3-bit from pre-amplifier, and 6-bit from PGA with 1 dB/step). With the condition of 15 dB gain, output P −dB is 11.8 dBm@3MHz, and the output IP3 is 20.8 dBm@3MHz.
doi_str_mv 10.1109/TCSII.2021.3125305
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2639932346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9601299</ieee_id><sourcerecordid>2639932346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ae82106566eed2babd2eabfb99ccbdb76b9b550411758ca781eb26ceb654492a3</originalsourceid><addsrcrecordid>eNo9kd1OwkAQhRujiYi-gN5s4nVxf7pb9hIaf0iIJIrxstndDrBQurjbGnkU39YWiFczyZzvzExOFN0SPCAEy4d59j6ZDCimZMAI5Qzzs6hHOB_GLJXkvOsTGadpkl5GVyGsMaYSM9qLfkcoK12AIp46t0NvYFy1sMvGK10CGlWqdEs0VgG0qgqUWW8aW_s9-rT1Cs12UB25eVMdgFdXmxV6smUNPqDaocl25903dMZgv8Gj-Q-agtqoJaCDY7c8thUal85surkrwavKwHV0sVBlgJtT7UcfT4_z7CWezp4n2WgaG8ZkHSsYUoIFFwKgoFrpgoLSCy2lMbrQqdBSc44TQlI-NCodEtBUGNCCJ4mkivWj-6Nve-hXA6HO167x7eMhp4JJyShLRKuiR5XxLgQPi3zn7Vb5fU5w3kWQHyLIuwjyUwQtdHeELAD8A1JgQlvfP5xJhHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639932346</pqid></control><display><type>article</type><title>A Closed-Loop Reconfigurable Analog Baseband Circuitry With Open-Loop Tunable Notch Filters to Improve Receiver Tx Leakage and Close-in Blocker Tolerance</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Xu ; Chen, Feng-Jun ; Zhang, Liang ; Gao, Hao ; Han, Jiang-An ; Han, Jing-Yu ; Yu, Yang ; Deng, Xian-Jin</creator><creatorcontrib>Cheng, Xu ; Chen, Feng-Jun ; Zhang, Liang ; Gao, Hao ; Han, Jiang-An ; Han, Jing-Yu ; Yu, Yang ; Deng, Xian-Jin</creatorcontrib><description><![CDATA[This brief presents an analog baseband (ABB) circuit in a 0.13 <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\mu }\text{m} </tex-math></inline-formula> SiGe technology for transmitter leakage cancellation and close-in blocker suppressions in fully duplex (FD) frequency-modulated continuous-wave (FMCW) radar. This ABB comprises a programmable gain amplifier (PGA) and a cascaded LPF/Notch hybrid, which incorporates a closed-loop (CL) reconfigurable low-pass filter (LPF) and an open-loop (OL) tunable notch filter. The adopted key topologies include active-R-C bi-quads and <inline-formula> <tex-math notation="LaTeX">\text{G}_{\mathrm{ m}} </tex-math></inline-formula>-C ones. In an FD FMCW transceiver, Tx leakage and close-in blockers are difficult to be eliminated in the RF domain, especially when leakage/blockers are very close to desired signals or even in-band in the frequency domain. This LPF/notch hybrid is proposed to solve this issue. The LPF and PGA provide bandwidth (BW)/gain programmability, while the <inline-formula> <tex-math notation="LaTeX">\text{G}_{\mathrm{ m}} </tex-math></inline-formula>-C bi-quad provides adaptable center frequency for a notch filter. With this adaption, the notch filter could be adjusted to match the leakage/blocker offset frequency. Thus, digitally discrete programmability and analog continuous tuning capability are combined in this solution for improving the overall front-end interference robustness without de-sensitizing the Rx. Furthermore, the order of LPF/notch hybrid is programmable from 2 to 10 with a step of 2 for different rejection levels of interferences. The measured chip achieves a −3dB bandwidth of 6 ~ 21 MHz with 4-bit digital control and 1 MHz/step programmability, and a voltage gain of 0 ~ 70 dB with 9-bit digital control (3-bit from pre-amplifier, and 6-bit from PGA with 1 dB/step). With the condition of 15 dB gain, output P −dB is 11.8 dBm@3MHz, and the output IP3 is 20.8 dBm@3MHz.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2021.3125305</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplification ; Amplifiers ; Analog baseband ; Analog circuits ; Bandwidths ; Circuits ; Computer architecture ; Continuous radiation ; Electronics packaging ; FMCW ; fully duplex ; Gain ; Gm-C filter ; Interference ; Leakage ; Low pass filters ; Mixers ; notch filter ; Notch filters ; PGA ; Reconfiguration ; Sensitizing ; Topology ; Voltage gain</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2022-03, Vol.69 (3), p.839-843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-ae82106566eed2babd2eabfb99ccbdb76b9b550411758ca781eb26ceb654492a3</citedby><cites>FETCH-LOGICAL-c339t-ae82106566eed2babd2eabfb99ccbdb76b9b550411758ca781eb26ceb654492a3</cites><orcidid>0000-0002-2203-3191 ; 0000-0002-7420-8213 ; 0000-0002-6169-7636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9601299$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9601299$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Chen, Feng-Jun</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Han, Jiang-An</creatorcontrib><creatorcontrib>Han, Jing-Yu</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Deng, Xian-Jin</creatorcontrib><title>A Closed-Loop Reconfigurable Analog Baseband Circuitry With Open-Loop Tunable Notch Filters to Improve Receiver Tx Leakage and Close-in Blocker Tolerance</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[This brief presents an analog baseband (ABB) circuit in a 0.13 <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\mu }\text{m} </tex-math></inline-formula> SiGe technology for transmitter leakage cancellation and close-in blocker suppressions in fully duplex (FD) frequency-modulated continuous-wave (FMCW) radar. This ABB comprises a programmable gain amplifier (PGA) and a cascaded LPF/Notch hybrid, which incorporates a closed-loop (CL) reconfigurable low-pass filter (LPF) and an open-loop (OL) tunable notch filter. The adopted key topologies include active-R-C bi-quads and <inline-formula> <tex-math notation="LaTeX">\text{G}_{\mathrm{ m}} </tex-math></inline-formula>-C ones. In an FD FMCW transceiver, Tx leakage and close-in blockers are difficult to be eliminated in the RF domain, especially when leakage/blockers are very close to desired signals or even in-band in the frequency domain. This LPF/notch hybrid is proposed to solve this issue. The LPF and PGA provide bandwidth (BW)/gain programmability, while the <inline-formula> <tex-math notation="LaTeX">\text{G}_{\mathrm{ m}} </tex-math></inline-formula>-C bi-quad provides adaptable center frequency for a notch filter. With this adaption, the notch filter could be adjusted to match the leakage/blocker offset frequency. Thus, digitally discrete programmability and analog continuous tuning capability are combined in this solution for improving the overall front-end interference robustness without de-sensitizing the Rx. Furthermore, the order of LPF/notch hybrid is programmable from 2 to 10 with a step of 2 for different rejection levels of interferences. The measured chip achieves a −3dB bandwidth of 6 ~ 21 MHz with 4-bit digital control and 1 MHz/step programmability, and a voltage gain of 0 ~ 70 dB with 9-bit digital control (3-bit from pre-amplifier, and 6-bit from PGA with 1 dB/step). With the condition of 15 dB gain, output P −dB is 11.8 dBm@3MHz, and the output IP3 is 20.8 dBm@3MHz.]]></description><subject>Amplification</subject><subject>Amplifiers</subject><subject>Analog baseband</subject><subject>Analog circuits</subject><subject>Bandwidths</subject><subject>Circuits</subject><subject>Computer architecture</subject><subject>Continuous radiation</subject><subject>Electronics packaging</subject><subject>FMCW</subject><subject>fully duplex</subject><subject>Gain</subject><subject>Gm-C filter</subject><subject>Interference</subject><subject>Leakage</subject><subject>Low pass filters</subject><subject>Mixers</subject><subject>notch filter</subject><subject>Notch filters</subject><subject>PGA</subject><subject>Reconfiguration</subject><subject>Sensitizing</subject><subject>Topology</subject><subject>Voltage gain</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kd1OwkAQhRujiYi-gN5s4nVxf7pb9hIaf0iIJIrxstndDrBQurjbGnkU39YWiFczyZzvzExOFN0SPCAEy4d59j6ZDCimZMAI5Qzzs6hHOB_GLJXkvOsTGadpkl5GVyGsMaYSM9qLfkcoK12AIp46t0NvYFy1sMvGK10CGlWqdEs0VgG0qgqUWW8aW_s9-rT1Cs12UB25eVMdgFdXmxV6smUNPqDaocl25903dMZgv8Gj-Q-agtqoJaCDY7c8thUal85surkrwavKwHV0sVBlgJtT7UcfT4_z7CWezp4n2WgaG8ZkHSsYUoIFFwKgoFrpgoLSCy2lMbrQqdBSc44TQlI-NCodEtBUGNCCJ4mkivWj-6Nve-hXA6HO167x7eMhp4JJyShLRKuiR5XxLgQPi3zn7Vb5fU5w3kWQHyLIuwjyUwQtdHeELAD8A1JgQlvfP5xJhHM</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Cheng, Xu</creator><creator>Chen, Feng-Jun</creator><creator>Zhang, Liang</creator><creator>Gao, Hao</creator><creator>Han, Jiang-An</creator><creator>Han, Jing-Yu</creator><creator>Yu, Yang</creator><creator>Deng, Xian-Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2203-3191</orcidid><orcidid>https://orcid.org/0000-0002-7420-8213</orcidid><orcidid>https://orcid.org/0000-0002-6169-7636</orcidid></search><sort><creationdate>20220301</creationdate><title>A Closed-Loop Reconfigurable Analog Baseband Circuitry With Open-Loop Tunable Notch Filters to Improve Receiver Tx Leakage and Close-in Blocker Tolerance</title><author>Cheng, Xu ; Chen, Feng-Jun ; Zhang, Liang ; Gao, Hao ; Han, Jiang-An ; Han, Jing-Yu ; Yu, Yang ; Deng, Xian-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ae82106566eed2babd2eabfb99ccbdb76b9b550411758ca781eb26ceb654492a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Amplifiers</topic><topic>Analog baseband</topic><topic>Analog circuits</topic><topic>Bandwidths</topic><topic>Circuits</topic><topic>Computer architecture</topic><topic>Continuous radiation</topic><topic>Electronics packaging</topic><topic>FMCW</topic><topic>fully duplex</topic><topic>Gain</topic><topic>Gm-C filter</topic><topic>Interference</topic><topic>Leakage</topic><topic>Low pass filters</topic><topic>Mixers</topic><topic>notch filter</topic><topic>Notch filters</topic><topic>PGA</topic><topic>Reconfiguration</topic><topic>Sensitizing</topic><topic>Topology</topic><topic>Voltage gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Chen, Feng-Jun</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Han, Jiang-An</creatorcontrib><creatorcontrib>Han, Jing-Yu</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Deng, Xian-Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Xu</au><au>Chen, Feng-Jun</au><au>Zhang, Liang</au><au>Gao, Hao</au><au>Han, Jiang-An</au><au>Han, Jing-Yu</au><au>Yu, Yang</au><au>Deng, Xian-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Closed-Loop Reconfigurable Analog Baseband Circuitry With Open-Loop Tunable Notch Filters to Improve Receiver Tx Leakage and Close-in Blocker Tolerance</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>69</volume><issue>3</issue><spage>839</spage><epage>843</epage><pages>839-843</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract><![CDATA[This brief presents an analog baseband (ABB) circuit in a 0.13 <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\mu }\text{m} </tex-math></inline-formula> SiGe technology for transmitter leakage cancellation and close-in blocker suppressions in fully duplex (FD) frequency-modulated continuous-wave (FMCW) radar. This ABB comprises a programmable gain amplifier (PGA) and a cascaded LPF/Notch hybrid, which incorporates a closed-loop (CL) reconfigurable low-pass filter (LPF) and an open-loop (OL) tunable notch filter. The adopted key topologies include active-R-C bi-quads and <inline-formula> <tex-math notation="LaTeX">\text{G}_{\mathrm{ m}} </tex-math></inline-formula>-C ones. In an FD FMCW transceiver, Tx leakage and close-in blockers are difficult to be eliminated in the RF domain, especially when leakage/blockers are very close to desired signals or even in-band in the frequency domain. This LPF/notch hybrid is proposed to solve this issue. The LPF and PGA provide bandwidth (BW)/gain programmability, while the <inline-formula> <tex-math notation="LaTeX">\text{G}_{\mathrm{ m}} </tex-math></inline-formula>-C bi-quad provides adaptable center frequency for a notch filter. With this adaption, the notch filter could be adjusted to match the leakage/blocker offset frequency. Thus, digitally discrete programmability and analog continuous tuning capability are combined in this solution for improving the overall front-end interference robustness without de-sensitizing the Rx. Furthermore, the order of LPF/notch hybrid is programmable from 2 to 10 with a step of 2 for different rejection levels of interferences. The measured chip achieves a −3dB bandwidth of 6 ~ 21 MHz with 4-bit digital control and 1 MHz/step programmability, and a voltage gain of 0 ~ 70 dB with 9-bit digital control (3-bit from pre-amplifier, and 6-bit from PGA with 1 dB/step). With the condition of 15 dB gain, output P −dB is 11.8 dBm@3MHz, and the output IP3 is 20.8 dBm@3MHz.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2021.3125305</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2203-3191</orcidid><orcidid>https://orcid.org/0000-0002-7420-8213</orcidid><orcidid>https://orcid.org/0000-0002-6169-7636</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2022-03, Vol.69 (3), p.839-843
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2639932346
source IEEE Electronic Library (IEL)
subjects Amplification
Amplifiers
Analog baseband
Analog circuits
Bandwidths
Circuits
Computer architecture
Continuous radiation
Electronics packaging
FMCW
fully duplex
Gain
Gm-C filter
Interference
Leakage
Low pass filters
Mixers
notch filter
Notch filters
PGA
Reconfiguration
Sensitizing
Topology
Voltage gain
title A Closed-Loop Reconfigurable Analog Baseband Circuitry With Open-Loop Tunable Notch Filters to Improve Receiver Tx Leakage and Close-in Blocker Tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Closed-Loop%20Reconfigurable%20Analog%20Baseband%20Circuitry%20With%20Open-Loop%20Tunable%20Notch%20Filters%20to%20Improve%20Receiver%20Tx%20Leakage%20and%20Close-in%20Blocker%20Tolerance&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Cheng,%20Xu&rft.date=2022-03-01&rft.volume=69&rft.issue=3&rft.spage=839&rft.epage=843&rft.pages=839-843&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2021.3125305&rft_dat=%3Cproquest_RIE%3E2639932346%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639932346&rft_id=info:pmid/&rft_ieee_id=9601299&rfr_iscdi=true