Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells

The platinum nanowires have been verified to be a promising catalyst to promote the performance of proton exchange membrane fuel cells. In this paper, accurately controlled growth of nanowires in a carbon matrix is achieved for reducing Pt loading. The effects of formic acid concentration and reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of chemical science and engineering 2022-03, Vol.16 (3), p.364-375
Hauptverfasser: Wang, Ruiqing, Cao, Xiaolan, Sui, Sheng, Li, Bing, Li, Qingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 3
container_start_page 364
container_title Frontiers of chemical science and engineering
container_volume 16
creator Wang, Ruiqing
Cao, Xiaolan
Sui, Sheng
Li, Bing
Li, Qingfeng
description The platinum nanowires have been verified to be a promising catalyst to promote the performance of proton exchange membrane fuel cells. In this paper, accurately controlled growth of nanowires in a carbon matrix is achieved for reducing Pt loading. The effects of formic acid concentration and reaction temperature on the morphology and size of the Pt nanowires, as well as their electrochemical performances in a single cell, are investigated. The results showed that the increase in the formic acid concentration results in a volcano trend with the length of Pt nanowires. With increasing reduction temperature, the diameter of Pt nanowires increases while Pt particles evolve from one-dimensional to zero-dimensional up to 40 °C. A mechanism of the Pt nanowires growth is proposed. The optimized Pt nanowires electrode exhibits a power density (based on electrochemical active surface area) 79% higher than conventional Pt/C one. The control strategy obtained contributes to the design and control of novel nanostructures in nano-synthesis and catalyst applications.
doi_str_mv 10.1007/s11705-021-2052-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639590838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639590838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-6713562b5f46fe391bdeb907107e23a9e2942f4a03267a8001a4cf521c02fb5c3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVNAP4GaJc8CPOI6PqOIlVeIAnC3HXTdBqVNsR6X9elwFwYnTrFYzszuD0BUlN5QQeRsplUQUhNGCEcGKwwmaMaLyhtby9HeW6hzNY-wawimrOJdyhuA1jas9HjxOLeB1GHapxYPD296kzo8b7I0fdl2AiE3E1qR2WMERTb-PKeLO420YUtbDl22NXwPewKYJxgN2I_TYQt_HS3TmTB9h_oMX6P3h_m3xVCxfHp8Xd8vC8kqkopKUi4o1wpWVA65os4JGEUmJBMaNAqZK5kpDOKukqQmhprROMGoJc42w_AJdT775p88RYtIfwxh8PqlzYCUUqXmdWXRi2TDEGMDpbeg2Juw1JfpYqJ4K1blQfSxUH7KGTZqYuTll-HP-X_QNzDJ5Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639590838</pqid></control><display><type>article</type><title>Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Ruiqing ; Cao, Xiaolan ; Sui, Sheng ; Li, Bing ; Li, Qingfeng</creator><creatorcontrib>Wang, Ruiqing ; Cao, Xiaolan ; Sui, Sheng ; Li, Bing ; Li, Qingfeng</creatorcontrib><description>The platinum nanowires have been verified to be a promising catalyst to promote the performance of proton exchange membrane fuel cells. In this paper, accurately controlled growth of nanowires in a carbon matrix is achieved for reducing Pt loading. The effects of formic acid concentration and reaction temperature on the morphology and size of the Pt nanowires, as well as their electrochemical performances in a single cell, are investigated. The results showed that the increase in the formic acid concentration results in a volcano trend with the length of Pt nanowires. With increasing reduction temperature, the diameter of Pt nanowires increases while Pt particles evolve from one-dimensional to zero-dimensional up to 40 °C. A mechanism of the Pt nanowires growth is proposed. The optimized Pt nanowires electrode exhibits a power density (based on electrochemical active surface area) 79% higher than conventional Pt/C one. The control strategy obtained contributes to the design and control of novel nanostructures in nano-synthesis and catalyst applications.</description><identifier>ISSN: 2095-0179</identifier><identifier>EISSN: 2095-0187</identifier><identifier>DOI: 10.1007/s11705-021-2052-z</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Diameters ; Formic acid ; Fuel cells ; Industrial Chemistry/Chemical Engineering ; Nanotechnology ; Nanowires ; Platinum ; Proton exchange membrane fuel cells ; Protons ; Research Article</subject><ispartof>Frontiers of chemical science and engineering, 2022-03, Vol.16 (3), p.364-375</ispartof><rights>Higher Education Press 2021</rights><rights>Higher Education Press 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-6713562b5f46fe391bdeb907107e23a9e2942f4a03267a8001a4cf521c02fb5c3</citedby><cites>FETCH-LOGICAL-c365t-6713562b5f46fe391bdeb907107e23a9e2942f4a03267a8001a4cf521c02fb5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11705-021-2052-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11705-021-2052-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Ruiqing</creatorcontrib><creatorcontrib>Cao, Xiaolan</creatorcontrib><creatorcontrib>Sui, Sheng</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><title>Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells</title><title>Frontiers of chemical science and engineering</title><addtitle>Front. Chem. Sci. Eng</addtitle><description>The platinum nanowires have been verified to be a promising catalyst to promote the performance of proton exchange membrane fuel cells. In this paper, accurately controlled growth of nanowires in a carbon matrix is achieved for reducing Pt loading. The effects of formic acid concentration and reaction temperature on the morphology and size of the Pt nanowires, as well as their electrochemical performances in a single cell, are investigated. The results showed that the increase in the formic acid concentration results in a volcano trend with the length of Pt nanowires. With increasing reduction temperature, the diameter of Pt nanowires increases while Pt particles evolve from one-dimensional to zero-dimensional up to 40 °C. A mechanism of the Pt nanowires growth is proposed. The optimized Pt nanowires electrode exhibits a power density (based on electrochemical active surface area) 79% higher than conventional Pt/C one. The control strategy obtained contributes to the design and control of novel nanostructures in nano-synthesis and catalyst applications.</description><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diameters</subject><subject>Formic acid</subject><subject>Fuel cells</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Platinum</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Research Article</subject><issn>2095-0179</issn><issn>2095-0187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVNAP4GaJc8CPOI6PqOIlVeIAnC3HXTdBqVNsR6X9elwFwYnTrFYzszuD0BUlN5QQeRsplUQUhNGCEcGKwwmaMaLyhtby9HeW6hzNY-wawimrOJdyhuA1jas9HjxOLeB1GHapxYPD296kzo8b7I0fdl2AiE3E1qR2WMERTb-PKeLO420YUtbDl22NXwPewKYJxgN2I_TYQt_HS3TmTB9h_oMX6P3h_m3xVCxfHp8Xd8vC8kqkopKUi4o1wpWVA65os4JGEUmJBMaNAqZK5kpDOKukqQmhprROMGoJc42w_AJdT775p88RYtIfwxh8PqlzYCUUqXmdWXRi2TDEGMDpbeg2Juw1JfpYqJ4K1blQfSxUH7KGTZqYuTll-HP-X_QNzDJ5Ww</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Ruiqing</creator><creator>Cao, Xiaolan</creator><creator>Sui, Sheng</creator><creator>Li, Bing</creator><creator>Li, Qingfeng</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells</title><author>Wang, Ruiqing ; Cao, Xiaolan ; Sui, Sheng ; Li, Bing ; Li, Qingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-6713562b5f46fe391bdeb907107e23a9e2942f4a03267a8001a4cf521c02fb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diameters</topic><topic>Formic acid</topic><topic>Fuel cells</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Platinum</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruiqing</creatorcontrib><creatorcontrib>Cao, Xiaolan</creatorcontrib><creatorcontrib>Sui, Sheng</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of chemical science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ruiqing</au><au>Cao, Xiaolan</au><au>Sui, Sheng</au><au>Li, Bing</au><au>Li, Qingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells</atitle><jtitle>Frontiers of chemical science and engineering</jtitle><stitle>Front. Chem. Sci. Eng</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>364</spage><epage>375</epage><pages>364-375</pages><issn>2095-0179</issn><eissn>2095-0187</eissn><abstract>The platinum nanowires have been verified to be a promising catalyst to promote the performance of proton exchange membrane fuel cells. In this paper, accurately controlled growth of nanowires in a carbon matrix is achieved for reducing Pt loading. The effects of formic acid concentration and reaction temperature on the morphology and size of the Pt nanowires, as well as their electrochemical performances in a single cell, are investigated. The results showed that the increase in the formic acid concentration results in a volcano trend with the length of Pt nanowires. With increasing reduction temperature, the diameter of Pt nanowires increases while Pt particles evolve from one-dimensional to zero-dimensional up to 40 °C. A mechanism of the Pt nanowires growth is proposed. The optimized Pt nanowires electrode exhibits a power density (based on electrochemical active surface area) 79% higher than conventional Pt/C one. The control strategy obtained contributes to the design and control of novel nanostructures in nano-synthesis and catalyst applications.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11705-021-2052-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-0179
ispartof Frontiers of chemical science and engineering, 2022-03, Vol.16 (3), p.364-375
issn 2095-0179
2095-0187
language eng
recordid cdi_proquest_journals_2639590838
source SpringerLink Journals - AutoHoldings
subjects Catalysts
Chemical synthesis
Chemistry
Chemistry and Materials Science
Diameters
Formic acid
Fuel cells
Industrial Chemistry/Chemical Engineering
Nanotechnology
Nanowires
Platinum
Proton exchange membrane fuel cells
Protons
Research Article
title Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20growth%20of%20platinum%20nanowires%20as%20cathode%20catalysts%20in%20proton%20exchange%20membrane%20fuel%20cells&rft.jtitle=Frontiers%20of%20chemical%20science%20and%20engineering&rft.au=Wang,%20Ruiqing&rft.date=2022-03-01&rft.volume=16&rft.issue=3&rft.spage=364&rft.epage=375&rft.pages=364-375&rft.issn=2095-0179&rft.eissn=2095-0187&rft_id=info:doi/10.1007/s11705-021-2052-z&rft_dat=%3Cproquest_cross%3E2639590838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639590838&rft_id=info:pmid/&rfr_iscdi=true