A dynamic adaptive grating algorithm for AIS-based ship trajectory compression
Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression alg...
Gespeichert in:
Veröffentlicht in: | Journal of navigation 2022-01, Vol.75 (1), p.213-229 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 1 |
container_start_page | 213 |
container_title | Journal of navigation |
container_volume | 75 |
creator | Ji, Yuanyuan Qi, Le Balling, Robert |
description | Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display. |
doi_str_mv | 10.1017/S0373463321000692 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639152158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0373463321000692</cupid><sourcerecordid>2639152158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAczVf0zTNcQx1g6GH6bkkadJlrE1NMmH_3o4NPIin7_A-z_vBi9A9kEcgwJ_WhHJalJTmQAgpRX6BJlCUIuO8YpdocoyzY36NbmLcjkxVVGyC3ma4OfSycxrLRg7JfRvcBplc32K5a31wadNh6wOeLdeZktE0OG7cgFOQW6OTDwesfTcEE6Pz_S26snIXzd35TtHny_PHfJGt3l-X89kq0xR4ygQ3qjANMLBKUF0QzkkFylihZKEqLYXmhgjKSkVKLUieC20os1YBlZW2dIoeTr1D8F97E1O99fvQjy_rvKQCWA6sGik4UTr4GIOx9RBcJ8OhBlIfZ6v_zDY69OzITgXXtOa3-n_rB2bTbxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639152158</pqid></control><display><type>article</type><title>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</title><source>Cambridge University Press Journals Complete</source><creator>Ji, Yuanyuan ; Qi, Le ; Balling, Robert</creator><creatorcontrib>Ji, Yuanyuan ; Qi, Le ; Balling, Robert</creatorcontrib><description>Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display.</description><identifier>ISSN: 0373-4633</identifier><identifier>EISSN: 1469-7785</identifier><identifier>DOI: 10.1017/S0373463321000692</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptive algorithms ; Algorithms ; Cartography ; Complexity ; Compression ; Computation ; Data compression ; Data storage ; Information storage ; Ports ; Similarity measures ; Traffic congestion</subject><ispartof>Journal of navigation, 2022-01, Vol.75 (1), p.213-229</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</citedby><cites>FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</cites><orcidid>0000-0001-8675-6818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0373463321000692/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>Ji, Yuanyuan</creatorcontrib><creatorcontrib>Qi, Le</creatorcontrib><creatorcontrib>Balling, Robert</creatorcontrib><title>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</title><title>Journal of navigation</title><addtitle>J. Navigation</addtitle><description>Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Cartography</subject><subject>Complexity</subject><subject>Compression</subject><subject>Computation</subject><subject>Data compression</subject><subject>Data storage</subject><subject>Information storage</subject><subject>Ports</subject><subject>Similarity measures</subject><subject>Traffic congestion</subject><issn>0373-4633</issn><issn>1469-7785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvAczVf0zTNcQx1g6GH6bkkadJlrE1NMmH_3o4NPIin7_A-z_vBi9A9kEcgwJ_WhHJalJTmQAgpRX6BJlCUIuO8YpdocoyzY36NbmLcjkxVVGyC3ma4OfSycxrLRg7JfRvcBplc32K5a31wadNh6wOeLdeZktE0OG7cgFOQW6OTDwesfTcEE6Pz_S26snIXzd35TtHny_PHfJGt3l-X89kq0xR4ygQ3qjANMLBKUF0QzkkFylihZKEqLYXmhgjKSkVKLUieC20os1YBlZW2dIoeTr1D8F97E1O99fvQjy_rvKQCWA6sGik4UTr4GIOx9RBcJ8OhBlIfZ6v_zDY69OzITgXXtOa3-n_rB2bTbxk</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Ji, Yuanyuan</creator><creator>Qi, Le</creator><creator>Balling, Robert</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8675-6818</orcidid></search><sort><creationdate>202201</creationdate><title>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</title><author>Ji, Yuanyuan ; Qi, Le ; Balling, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Cartography</topic><topic>Complexity</topic><topic>Compression</topic><topic>Computation</topic><topic>Data compression</topic><topic>Data storage</topic><topic>Information storage</topic><topic>Ports</topic><topic>Similarity measures</topic><topic>Traffic congestion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yuanyuan</creatorcontrib><creatorcontrib>Qi, Le</creatorcontrib><creatorcontrib>Balling, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yuanyuan</au><au>Qi, Le</au><au>Balling, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</atitle><jtitle>Journal of navigation</jtitle><addtitle>J. Navigation</addtitle><date>2022-01</date><risdate>2022</risdate><volume>75</volume><issue>1</issue><spage>213</spage><epage>229</epage><pages>213-229</pages><issn>0373-4633</issn><eissn>1469-7785</eissn><abstract>Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0373463321000692</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8675-6818</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0373-4633 |
ispartof | Journal of navigation, 2022-01, Vol.75 (1), p.213-229 |
issn | 0373-4633 1469-7785 |
language | eng |
recordid | cdi_proquest_journals_2639152158 |
source | Cambridge University Press Journals Complete |
subjects | Adaptive algorithms Algorithms Cartography Complexity Compression Computation Data compression Data storage Information storage Ports Similarity measures Traffic congestion |
title | A dynamic adaptive grating algorithm for AIS-based ship trajectory compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20adaptive%20grating%20algorithm%20for%20AIS-based%20ship%20trajectory%20compression&rft.jtitle=Journal%20of%20navigation&rft.au=Ji,%20Yuanyuan&rft.date=2022-01&rft.volume=75&rft.issue=1&rft.spage=213&rft.epage=229&rft.pages=213-229&rft.issn=0373-4633&rft.eissn=1469-7785&rft_id=info:doi/10.1017/S0373463321000692&rft_dat=%3Cproquest_cross%3E2639152158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639152158&rft_id=info:pmid/&rft_cupid=10_1017_S0373463321000692&rfr_iscdi=true |