A dynamic adaptive grating algorithm for AIS-based ship trajectory compression

Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of navigation 2022-01, Vol.75 (1), p.213-229
Hauptverfasser: Ji, Yuanyuan, Qi, Le, Balling, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 1
container_start_page 213
container_title Journal of navigation
container_volume 75
creator Ji, Yuanyuan
Qi, Le
Balling, Robert
description Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display.
doi_str_mv 10.1017/S0373463321000692
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639152158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0373463321000692</cupid><sourcerecordid>2639152158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAczVf0zTNcQx1g6GH6bkkadJlrE1NMmH_3o4NPIin7_A-z_vBi9A9kEcgwJ_WhHJalJTmQAgpRX6BJlCUIuO8YpdocoyzY36NbmLcjkxVVGyC3ma4OfSycxrLRg7JfRvcBplc32K5a31wadNh6wOeLdeZktE0OG7cgFOQW6OTDwesfTcEE6Pz_S26snIXzd35TtHny_PHfJGt3l-X89kq0xR4ygQ3qjANMLBKUF0QzkkFylihZKEqLYXmhgjKSkVKLUieC20os1YBlZW2dIoeTr1D8F97E1O99fvQjy_rvKQCWA6sGik4UTr4GIOx9RBcJ8OhBlIfZ6v_zDY69OzITgXXtOa3-n_rB2bTbxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639152158</pqid></control><display><type>article</type><title>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</title><source>Cambridge University Press Journals Complete</source><creator>Ji, Yuanyuan ; Qi, Le ; Balling, Robert</creator><creatorcontrib>Ji, Yuanyuan ; Qi, Le ; Balling, Robert</creatorcontrib><description>Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display.</description><identifier>ISSN: 0373-4633</identifier><identifier>EISSN: 1469-7785</identifier><identifier>DOI: 10.1017/S0373463321000692</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptive algorithms ; Algorithms ; Cartography ; Complexity ; Compression ; Computation ; Data compression ; Data storage ; Information storage ; Ports ; Similarity measures ; Traffic congestion</subject><ispartof>Journal of navigation, 2022-01, Vol.75 (1), p.213-229</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</citedby><cites>FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</cites><orcidid>0000-0001-8675-6818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0373463321000692/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>Ji, Yuanyuan</creatorcontrib><creatorcontrib>Qi, Le</creatorcontrib><creatorcontrib>Balling, Robert</creatorcontrib><title>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</title><title>Journal of navigation</title><addtitle>J. Navigation</addtitle><description>Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Cartography</subject><subject>Complexity</subject><subject>Compression</subject><subject>Computation</subject><subject>Data compression</subject><subject>Data storage</subject><subject>Information storage</subject><subject>Ports</subject><subject>Similarity measures</subject><subject>Traffic congestion</subject><issn>0373-4633</issn><issn>1469-7785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvAczVf0zTNcQx1g6GH6bkkadJlrE1NMmH_3o4NPIin7_A-z_vBi9A9kEcgwJ_WhHJalJTmQAgpRX6BJlCUIuO8YpdocoyzY36NbmLcjkxVVGyC3ma4OfSycxrLRg7JfRvcBplc32K5a31wadNh6wOeLdeZktE0OG7cgFOQW6OTDwesfTcEE6Pz_S26snIXzd35TtHny_PHfJGt3l-X89kq0xR4ygQ3qjANMLBKUF0QzkkFylihZKEqLYXmhgjKSkVKLUieC20os1YBlZW2dIoeTr1D8F97E1O99fvQjy_rvKQCWA6sGik4UTr4GIOx9RBcJ8OhBlIfZ6v_zDY69OzITgXXtOa3-n_rB2bTbxk</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Ji, Yuanyuan</creator><creator>Qi, Le</creator><creator>Balling, Robert</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8675-6818</orcidid></search><sort><creationdate>202201</creationdate><title>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</title><author>Ji, Yuanyuan ; Qi, Le ; Balling, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-97eb4ed151fb93c4077081bef9ba4b8ca9c7e09356b06c90229ce35ffb13a8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Cartography</topic><topic>Complexity</topic><topic>Compression</topic><topic>Computation</topic><topic>Data compression</topic><topic>Data storage</topic><topic>Information storage</topic><topic>Ports</topic><topic>Similarity measures</topic><topic>Traffic congestion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yuanyuan</creatorcontrib><creatorcontrib>Qi, Le</creatorcontrib><creatorcontrib>Balling, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yuanyuan</au><au>Qi, Le</au><au>Balling, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic adaptive grating algorithm for AIS-based ship trajectory compression</atitle><jtitle>Journal of navigation</jtitle><addtitle>J. Navigation</addtitle><date>2022-01</date><risdate>2022</risdate><volume>75</volume><issue>1</issue><spage>213</spage><epage>229</epage><pages>213-229</pages><issn>0373-4633</issn><eissn>1469-7785</eissn><abstract>Automatic identification system (AIS)-based ship trajectory data are important for analysing maritime activities. As the data accumulate over time, trajectory compression is needed to alleviate the pressure of data storage, migration and usage. The grating algorithm, as a vector data compression algorithm with high compression performance and low computation complexity, has been considered as a very promising approach for ship trajectory compression. This algorithm needs the threshold to be set for each trajectory which limits the applicability over a large number of different trajectories. To solve this problem, a dynamic adaptive threshold grating compression algorithm is developed. In this algorithm, the threshold for each trajectory is dynamically generated using an effective approaching strategy. The developed algorithm is tested with a complex trajectory dataset from the Qiongzhou Strait, China. In comparison with the traditional grating method, our algorithm has improved advantages in the ease of use, the applicability to different trajectories and compression performance, all of which can better support relevant applications, such as ship trajectory data storage and rapid cartographic display.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0373463321000692</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8675-6818</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0373-4633
ispartof Journal of navigation, 2022-01, Vol.75 (1), p.213-229
issn 0373-4633
1469-7785
language eng
recordid cdi_proquest_journals_2639152158
source Cambridge University Press Journals Complete
subjects Adaptive algorithms
Algorithms
Cartography
Complexity
Compression
Computation
Data compression
Data storage
Information storage
Ports
Similarity measures
Traffic congestion
title A dynamic adaptive grating algorithm for AIS-based ship trajectory compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20adaptive%20grating%20algorithm%20for%20AIS-based%20ship%20trajectory%20compression&rft.jtitle=Journal%20of%20navigation&rft.au=Ji,%20Yuanyuan&rft.date=2022-01&rft.volume=75&rft.issue=1&rft.spage=213&rft.epage=229&rft.pages=213-229&rft.issn=0373-4633&rft.eissn=1469-7785&rft_id=info:doi/10.1017/S0373463321000692&rft_dat=%3Cproquest_cross%3E2639152158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639152158&rft_id=info:pmid/&rft_cupid=10_1017_S0373463321000692&rfr_iscdi=true