Adaptive full order sliding mode control for electronic throttle valve system with fixed time convergence using extreme learning machine

This paper proposes a novel extreme learning machine (ELM)-based fixed time adaptive trajectory control for electronic throttle valve system with uncertain dynamics and external disturbances. The developed control strategy consists of a recursive full order terminal sliding mode structure based on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-04, Vol.34 (7), p.5241-5253
Hauptverfasser: Hu, Youhao, Wang, Hai, Yazdani, Amirmehdi, Man, Zhihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5253
container_issue 7
container_start_page 5241
container_title Neural computing & applications
container_volume 34
creator Hu, Youhao
Wang, Hai
Yazdani, Amirmehdi
Man, Zhihong
description This paper proposes a novel extreme learning machine (ELM)-based fixed time adaptive trajectory control for electronic throttle valve system with uncertain dynamics and external disturbances. The developed control strategy consists of a recursive full order terminal sliding mode structure based on the bilimit homogeneous property and a lumped uncertainty changing rate upper bound estimator via an adaptive ELM algorithm such that not only the fixed time convergence for both sliding variable and error states can be guaranteed, but also the chattering phenomenon can be suppressed effectively. The stability of the closed-loop system is proved rigorously based on Lyapunov theory. The simulation results are given to verify the superior tracking performance of the proposed control strategy.
doi_str_mv 10.1007/s00521-021-06365-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639123094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639123094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f494a3ea36b89f922d8d39bde7540d198e6c7acee2f77defeb46a02b81d8055f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgevRmMr_LUvyDghtdD2ly06akk5pkavsGPrYzHcGdi8vlcs93DhxCbhncM4DyIQDkKUtgmIIXeQJnZMIyzhMOeXVOJlBnwyvjl-QqhA0AZEWVT8j3TIldNHukurOWOq_Q02CNMu2Kbp1CKl0bvbNUO0_RouyP1kga197FaJHuhe3pcAwRt_TLxDXV5oCKRrM9wXv0K2wl0i4MnniIHvuPReHbU4iQa9PiNbnQwga8-d1T8vH0-D5_SRZvz6_z2SKRnNUx0VmdCY6CF8uq1nWaqkrxeqmwzDNQrK6wkKWQiKkuS4Ual1khIF1WTFWQ55pPyd3ou_Pus8MQm43rfNtHNmnBa5byvqpelY4q6V0IHnWz82Yr_LFh0AyNN2PjDQwzNN5AD_ERCr24XaH_s_6H-gHAYIeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639123094</pqid></control><display><type>article</type><title>Adaptive full order sliding mode control for electronic throttle valve system with fixed time convergence using extreme learning machine</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Youhao ; Wang, Hai ; Yazdani, Amirmehdi ; Man, Zhihong</creator><creatorcontrib>Hu, Youhao ; Wang, Hai ; Yazdani, Amirmehdi ; Man, Zhihong</creatorcontrib><description>This paper proposes a novel extreme learning machine (ELM)-based fixed time adaptive trajectory control for electronic throttle valve system with uncertain dynamics and external disturbances. The developed control strategy consists of a recursive full order terminal sliding mode structure based on the bilimit homogeneous property and a lumped uncertainty changing rate upper bound estimator via an adaptive ELM algorithm such that not only the fixed time convergence for both sliding variable and error states can be guaranteed, but also the chattering phenomenon can be suppressed effectively. The stability of the closed-loop system is proved rigorously based on Lyapunov theory. The simulation results are given to verify the superior tracking performance of the proposed control strategy.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06365-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive algorithms ; Adaptive control ; Artificial Intelligence ; Artificial neural networks ; Closed loop systems ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Control valves ; Convergence ; Data Mining and Knowledge Discovery ; Feedback control ; Image Processing and Computer Vision ; Machine learning ; Neural networks ; Probability and Statistics in Computer Science ; S.I: Computational Intelligence-based Control and Estimation in Mechatronic Systems ; Sliding mode control ; Special Issue on Computational Intelligence-based Control and Estimation in Mechatronic Systems ; Trajectory control ; Upper bounds</subject><ispartof>Neural computing &amp; applications, 2022-04, Vol.34 (7), p.5241-5253</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f494a3ea36b89f922d8d39bde7540d198e6c7acee2f77defeb46a02b81d8055f3</citedby><cites>FETCH-LOGICAL-c319t-f494a3ea36b89f922d8d39bde7540d198e6c7acee2f77defeb46a02b81d8055f3</cites><orcidid>0000-0003-2789-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06365-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06365-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hu, Youhao</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Yazdani, Amirmehdi</creatorcontrib><creatorcontrib>Man, Zhihong</creatorcontrib><title>Adaptive full order sliding mode control for electronic throttle valve system with fixed time convergence using extreme learning machine</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This paper proposes a novel extreme learning machine (ELM)-based fixed time adaptive trajectory control for electronic throttle valve system with uncertain dynamics and external disturbances. The developed control strategy consists of a recursive full order terminal sliding mode structure based on the bilimit homogeneous property and a lumped uncertainty changing rate upper bound estimator via an adaptive ELM algorithm such that not only the fixed time convergence for both sliding variable and error states can be guaranteed, but also the chattering phenomenon can be suppressed effectively. The stability of the closed-loop system is proved rigorously based on Lyapunov theory. The simulation results are given to verify the superior tracking performance of the proposed control strategy.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Closed loop systems</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Control valves</subject><subject>Convergence</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Feedback control</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.I: Computational Intelligence-based Control and Estimation in Mechatronic Systems</subject><subject>Sliding mode control</subject><subject>Special Issue on Computational Intelligence-based Control and Estimation in Mechatronic Systems</subject><subject>Trajectory control</subject><subject>Upper bounds</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgevRmMr_LUvyDghtdD2ly06akk5pkavsGPrYzHcGdi8vlcs93DhxCbhncM4DyIQDkKUtgmIIXeQJnZMIyzhMOeXVOJlBnwyvjl-QqhA0AZEWVT8j3TIldNHukurOWOq_Q02CNMu2Kbp1CKl0bvbNUO0_RouyP1kga197FaJHuhe3pcAwRt_TLxDXV5oCKRrM9wXv0K2wl0i4MnniIHvuPReHbU4iQa9PiNbnQwga8-d1T8vH0-D5_SRZvz6_z2SKRnNUx0VmdCY6CF8uq1nWaqkrxeqmwzDNQrK6wkKWQiKkuS4Ual1khIF1WTFWQ55pPyd3ou_Pus8MQm43rfNtHNmnBa5byvqpelY4q6V0IHnWz82Yr_LFh0AyNN2PjDQwzNN5AD_ERCr24XaH_s_6H-gHAYIeU</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Hu, Youhao</creator><creator>Wang, Hai</creator><creator>Yazdani, Amirmehdi</creator><creator>Man, Zhihong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2789-9530</orcidid></search><sort><creationdate>20220401</creationdate><title>Adaptive full order sliding mode control for electronic throttle valve system with fixed time convergence using extreme learning machine</title><author>Hu, Youhao ; Wang, Hai ; Yazdani, Amirmehdi ; Man, Zhihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f494a3ea36b89f922d8d39bde7540d198e6c7acee2f77defeb46a02b81d8055f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Closed loop systems</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Control valves</topic><topic>Convergence</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Feedback control</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.I: Computational Intelligence-based Control and Estimation in Mechatronic Systems</topic><topic>Sliding mode control</topic><topic>Special Issue on Computational Intelligence-based Control and Estimation in Mechatronic Systems</topic><topic>Trajectory control</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Youhao</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Yazdani, Amirmehdi</creatorcontrib><creatorcontrib>Man, Zhihong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Youhao</au><au>Wang, Hai</au><au>Yazdani, Amirmehdi</au><au>Man, Zhihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive full order sliding mode control for electronic throttle valve system with fixed time convergence using extreme learning machine</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>34</volume><issue>7</issue><spage>5241</spage><epage>5253</epage><pages>5241-5253</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper proposes a novel extreme learning machine (ELM)-based fixed time adaptive trajectory control for electronic throttle valve system with uncertain dynamics and external disturbances. The developed control strategy consists of a recursive full order terminal sliding mode structure based on the bilimit homogeneous property and a lumped uncertainty changing rate upper bound estimator via an adaptive ELM algorithm such that not only the fixed time convergence for both sliding variable and error states can be guaranteed, but also the chattering phenomenon can be suppressed effectively. The stability of the closed-loop system is proved rigorously based on Lyapunov theory. The simulation results are given to verify the superior tracking performance of the proposed control strategy.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06365-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2789-9530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-04, Vol.34 (7), p.5241-5253
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2639123094
source SpringerLink Journals - AutoHoldings
subjects Adaptive algorithms
Adaptive control
Artificial Intelligence
Artificial neural networks
Closed loop systems
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Control valves
Convergence
Data Mining and Knowledge Discovery
Feedback control
Image Processing and Computer Vision
Machine learning
Neural networks
Probability and Statistics in Computer Science
S.I: Computational Intelligence-based Control and Estimation in Mechatronic Systems
Sliding mode control
Special Issue on Computational Intelligence-based Control and Estimation in Mechatronic Systems
Trajectory control
Upper bounds
title Adaptive full order sliding mode control for electronic throttle valve system with fixed time convergence using extreme learning machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20full%20order%20sliding%20mode%20control%20for%20electronic%20throttle%20valve%20system%20with%20fixed%20time%20convergence%20using%20extreme%20learning%20machine&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Hu,%20Youhao&rft.date=2022-04-01&rft.volume=34&rft.issue=7&rft.spage=5241&rft.epage=5253&rft.pages=5241-5253&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06365-0&rft_dat=%3Cproquest_cross%3E2639123094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639123094&rft_id=info:pmid/&rfr_iscdi=true