An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems
The vibration mitigation of a monopile Offshore Wind Turbine (OWT) under wind and sea wave excitation is investigated, incorporating dynamic Vibration Control systems (VCS). The application of VCS to the OWTs has the potential to significantly improve the damping of the structure and its overall dyn...
Gespeichert in:
Veröffentlicht in: | Engineering structures 2022-03, Vol.254, p.113859, Article 113859 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113859 |
container_title | Engineering structures |
container_volume | 254 |
creator | Kampitsis, Andreas Kapasakalis, Konstantinos Via-Estrem, Lluis |
description | The vibration mitigation of a monopile Offshore Wind Turbine (OWT) under wind and sea wave excitation is investigated, incorporating dynamic Vibration Control systems (VCS). The application of VCS to the OWTs has the potential to significantly improve the damping of the structure and its overall dynamic responses. A novel passive vibration absorption configuration is proposed, namely the Extended KDamper (EKD). Contrary to the conventional tuned mass dampers, EKD can increase its vibration absorption capability by introducing negative stiffness elements, instead of increasing the additional mass at the top of the towers. Therefore, EKD provides better isolation properties. The EKD optimum design and its realization are based on engineering criteria and realistic manufacturing limitations. The turbulence wind load time histories are determined stochastically while the mean velocity value is produced using the Blade Element Momentum theory. The influence of the sea wave excitation is studied using an integrated Computational Fluid Dynamics (CFD) approach. For the sea wave simulation, both fluids (water and air) are discretized using a non-uniform grid on which the Navier–Stokes equations are solved using the Double Control Volume Finite Element Method (DCVFEM). In order to render the large-scale physical problem computationally feasible, the Dynamic Adaptive Mesh Optimisation (DMO) and High Performance Computing (HPC) schemes are incorporated. The OWT tower is modelled using variable cross section beam elements accounting for geometrical nonlinearity (second order phenomena). The monopile soil–structure interaction (SSI) is modelled using a prismatic beam on elastic foundation together with the corresponding springs and dashpots along the pile’s length. An extensive case study is carried out on a monopile OWT providing insight to the structural dynamics and illustrating the viability of the VCS on the offshore wind industry. It is shown that vibration control can extend the lifetime of the structure, increasing the OWTs’ reliability and sustainability.
•The Extended KDamper is proposed for passive vibration control of offshore wind turbines.•Detailed design of the Extended KDamper is presented.•Nonlinear FEA is carried out accounting for the combined action of wind and sea wave excitation.•Computational Fluid Dynamics is used to extract the sea wave excitation.•Soil–structure interaction is considered for a monopile foundation. |
doi_str_mv | 10.1016/j.engstruct.2022.113859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639042867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029622000207</els_id><sourcerecordid>2639042867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-dbfb57f5c37705e280804c6616c0c74f4afe6397f17ac897157c0b494bcfbd733</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYDXrflom_SyzE2FgTd64VVo02RL2ZKZpJP9ezMq3goHDgee9xzOA8A9RjlGuHoccmU3IfpRxpwgQnKMKS_rCzDDnNGMUUIvwQzhAmeI1NU1uAlhQAgRztEMfDYWGhvVxrdR9XC1bLLF6gkGsx93bTTOQqdT6bB1XsFvY3sYR98Zq0Ka4hYeTecnUDobvdvBcApR7cMtuNLtLqi73z4HH6vl--IlW789vy6adSZpQWPWd7ormS4lZQyVinDEUSGrClcSSVbootWqojXTmLWS1wyXTKKuqItO6q5nlM7Bw7T34N3XqEIUgxu9TScFSUFUEF6xRLGJkt6F4JUWB2_2rT8JjMTZoxjEn0dx9igmjynZTEmVnjga5UWQRlmpeuNVYntn_t3xA0u7gOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639042867</pqid></control><display><type>article</type><title>An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems</title><source>Elsevier ScienceDirect Journals</source><creator>Kampitsis, Andreas ; Kapasakalis, Konstantinos ; Via-Estrem, Lluis</creator><creatorcontrib>Kampitsis, Andreas ; Kapasakalis, Konstantinos ; Via-Estrem, Lluis</creatorcontrib><description>The vibration mitigation of a monopile Offshore Wind Turbine (OWT) under wind and sea wave excitation is investigated, incorporating dynamic Vibration Control systems (VCS). The application of VCS to the OWTs has the potential to significantly improve the damping of the structure and its overall dynamic responses. A novel passive vibration absorption configuration is proposed, namely the Extended KDamper (EKD). Contrary to the conventional tuned mass dampers, EKD can increase its vibration absorption capability by introducing negative stiffness elements, instead of increasing the additional mass at the top of the towers. Therefore, EKD provides better isolation properties. The EKD optimum design and its realization are based on engineering criteria and realistic manufacturing limitations. The turbulence wind load time histories are determined stochastically while the mean velocity value is produced using the Blade Element Momentum theory. The influence of the sea wave excitation is studied using an integrated Computational Fluid Dynamics (CFD) approach. For the sea wave simulation, both fluids (water and air) are discretized using a non-uniform grid on which the Navier–Stokes equations are solved using the Double Control Volume Finite Element Method (DCVFEM). In order to render the large-scale physical problem computationally feasible, the Dynamic Adaptive Mesh Optimisation (DMO) and High Performance Computing (HPC) schemes are incorporated. The OWT tower is modelled using variable cross section beam elements accounting for geometrical nonlinearity (second order phenomena). The monopile soil–structure interaction (SSI) is modelled using a prismatic beam on elastic foundation together with the corresponding springs and dashpots along the pile’s length. An extensive case study is carried out on a monopile OWT providing insight to the structural dynamics and illustrating the viability of the VCS on the offshore wind industry. It is shown that vibration control can extend the lifetime of the structure, increasing the OWTs’ reliability and sustainability.
•The Extended KDamper is proposed for passive vibration control of offshore wind turbines.•Detailed design of the Extended KDamper is presented.•Nonlinear FEA is carried out accounting for the combined action of wind and sea wave excitation.•Computational Fluid Dynamics is used to extract the sea wave excitation.•Soil–structure interaction is considered for a monopile foundation.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2022.113859</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absorption ; Computational fluid dynamics ; Computer applications ; Control systems ; Damping ; Dynamic structural analysis ; Dynamic vibration control ; Elastic foundations ; Extended KDamper ; Finite element method ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Mathematical models ; Mitigation ; Momentum theory ; Monopile SSI ; Negative stiffness ; Nonlinear FEM-CFD ; Nonlinear systems ; Offshore ; Offshore operations ; Offshore wind turbine ; Optimization ; Simulation ; Soil-structure interaction ; Springs (elastic) ; Stiffness ; Sustainability ; Turbines ; Vibration ; Vibration control ; Vibration isolators ; Water springs ; Wave excitation ; Wind loads ; Wind power ; Wind turbines</subject><ispartof>Engineering structures, 2022-03, Vol.254, p.113859, Article 113859</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-dbfb57f5c37705e280804c6616c0c74f4afe6397f17ac897157c0b494bcfbd733</citedby><cites>FETCH-LOGICAL-c343t-dbfb57f5c37705e280804c6616c0c74f4afe6397f17ac897157c0b494bcfbd733</cites><orcidid>0000-0002-6619-7374 ; 0000-0001-7056-9735 ; 0000-0003-3110-7225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029622000207$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kampitsis, Andreas</creatorcontrib><creatorcontrib>Kapasakalis, Konstantinos</creatorcontrib><creatorcontrib>Via-Estrem, Lluis</creatorcontrib><title>An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems</title><title>Engineering structures</title><description>The vibration mitigation of a monopile Offshore Wind Turbine (OWT) under wind and sea wave excitation is investigated, incorporating dynamic Vibration Control systems (VCS). The application of VCS to the OWTs has the potential to significantly improve the damping of the structure and its overall dynamic responses. A novel passive vibration absorption configuration is proposed, namely the Extended KDamper (EKD). Contrary to the conventional tuned mass dampers, EKD can increase its vibration absorption capability by introducing negative stiffness elements, instead of increasing the additional mass at the top of the towers. Therefore, EKD provides better isolation properties. The EKD optimum design and its realization are based on engineering criteria and realistic manufacturing limitations. The turbulence wind load time histories are determined stochastically while the mean velocity value is produced using the Blade Element Momentum theory. The influence of the sea wave excitation is studied using an integrated Computational Fluid Dynamics (CFD) approach. For the sea wave simulation, both fluids (water and air) are discretized using a non-uniform grid on which the Navier–Stokes equations are solved using the Double Control Volume Finite Element Method (DCVFEM). In order to render the large-scale physical problem computationally feasible, the Dynamic Adaptive Mesh Optimisation (DMO) and High Performance Computing (HPC) schemes are incorporated. The OWT tower is modelled using variable cross section beam elements accounting for geometrical nonlinearity (second order phenomena). The monopile soil–structure interaction (SSI) is modelled using a prismatic beam on elastic foundation together with the corresponding springs and dashpots along the pile’s length. An extensive case study is carried out on a monopile OWT providing insight to the structural dynamics and illustrating the viability of the VCS on the offshore wind industry. It is shown that vibration control can extend the lifetime of the structure, increasing the OWTs’ reliability and sustainability.
•The Extended KDamper is proposed for passive vibration control of offshore wind turbines.•Detailed design of the Extended KDamper is presented.•Nonlinear FEA is carried out accounting for the combined action of wind and sea wave excitation.•Computational Fluid Dynamics is used to extract the sea wave excitation.•Soil–structure interaction is considered for a monopile foundation.</description><subject>Absorption</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Control systems</subject><subject>Damping</subject><subject>Dynamic structural analysis</subject><subject>Dynamic vibration control</subject><subject>Elastic foundations</subject><subject>Extended KDamper</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Mitigation</subject><subject>Momentum theory</subject><subject>Monopile SSI</subject><subject>Negative stiffness</subject><subject>Nonlinear FEM-CFD</subject><subject>Nonlinear systems</subject><subject>Offshore</subject><subject>Offshore operations</subject><subject>Offshore wind turbine</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Soil-structure interaction</subject><subject>Springs (elastic)</subject><subject>Stiffness</subject><subject>Sustainability</subject><subject>Turbines</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Vibration isolators</subject><subject>Water springs</subject><subject>Wave excitation</subject><subject>Wind loads</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKe_wYDXrflom_SyzE2FgTd64VVo02RL2ZKZpJP9ezMq3goHDgee9xzOA8A9RjlGuHoccmU3IfpRxpwgQnKMKS_rCzDDnNGMUUIvwQzhAmeI1NU1uAlhQAgRztEMfDYWGhvVxrdR9XC1bLLF6gkGsx93bTTOQqdT6bB1XsFvY3sYR98Zq0Ka4hYeTecnUDobvdvBcApR7cMtuNLtLqi73z4HH6vl--IlW789vy6adSZpQWPWd7ormS4lZQyVinDEUSGrClcSSVbootWqojXTmLWS1wyXTKKuqItO6q5nlM7Bw7T34N3XqEIUgxu9TScFSUFUEF6xRLGJkt6F4JUWB2_2rT8JjMTZoxjEn0dx9igmjynZTEmVnjga5UWQRlmpeuNVYntn_t3xA0u7gOg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kampitsis, Andreas</creator><creator>Kapasakalis, Konstantinos</creator><creator>Via-Estrem, Lluis</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6619-7374</orcidid><orcidid>https://orcid.org/0000-0001-7056-9735</orcidid><orcidid>https://orcid.org/0000-0003-3110-7225</orcidid></search><sort><creationdate>20220301</creationdate><title>An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems</title><author>Kampitsis, Andreas ; Kapasakalis, Konstantinos ; Via-Estrem, Lluis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-dbfb57f5c37705e280804c6616c0c74f4afe6397f17ac897157c0b494bcfbd733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Control systems</topic><topic>Damping</topic><topic>Dynamic structural analysis</topic><topic>Dynamic vibration control</topic><topic>Elastic foundations</topic><topic>Extended KDamper</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Mitigation</topic><topic>Momentum theory</topic><topic>Monopile SSI</topic><topic>Negative stiffness</topic><topic>Nonlinear FEM-CFD</topic><topic>Nonlinear systems</topic><topic>Offshore</topic><topic>Offshore operations</topic><topic>Offshore wind turbine</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Soil-structure interaction</topic><topic>Springs (elastic)</topic><topic>Stiffness</topic><topic>Sustainability</topic><topic>Turbines</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Vibration isolators</topic><topic>Water springs</topic><topic>Wave excitation</topic><topic>Wind loads</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampitsis, Andreas</creatorcontrib><creatorcontrib>Kapasakalis, Konstantinos</creatorcontrib><creatorcontrib>Via-Estrem, Lluis</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampitsis, Andreas</au><au>Kapasakalis, Konstantinos</au><au>Via-Estrem, Lluis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems</atitle><jtitle>Engineering structures</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>254</volume><spage>113859</spage><pages>113859-</pages><artnum>113859</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>The vibration mitigation of a monopile Offshore Wind Turbine (OWT) under wind and sea wave excitation is investigated, incorporating dynamic Vibration Control systems (VCS). The application of VCS to the OWTs has the potential to significantly improve the damping of the structure and its overall dynamic responses. A novel passive vibration absorption configuration is proposed, namely the Extended KDamper (EKD). Contrary to the conventional tuned mass dampers, EKD can increase its vibration absorption capability by introducing negative stiffness elements, instead of increasing the additional mass at the top of the towers. Therefore, EKD provides better isolation properties. The EKD optimum design and its realization are based on engineering criteria and realistic manufacturing limitations. The turbulence wind load time histories are determined stochastically while the mean velocity value is produced using the Blade Element Momentum theory. The influence of the sea wave excitation is studied using an integrated Computational Fluid Dynamics (CFD) approach. For the sea wave simulation, both fluids (water and air) are discretized using a non-uniform grid on which the Navier–Stokes equations are solved using the Double Control Volume Finite Element Method (DCVFEM). In order to render the large-scale physical problem computationally feasible, the Dynamic Adaptive Mesh Optimisation (DMO) and High Performance Computing (HPC) schemes are incorporated. The OWT tower is modelled using variable cross section beam elements accounting for geometrical nonlinearity (second order phenomena). The monopile soil–structure interaction (SSI) is modelled using a prismatic beam on elastic foundation together with the corresponding springs and dashpots along the pile’s length. An extensive case study is carried out on a monopile OWT providing insight to the structural dynamics and illustrating the viability of the VCS on the offshore wind industry. It is shown that vibration control can extend the lifetime of the structure, increasing the OWTs’ reliability and sustainability.
•The Extended KDamper is proposed for passive vibration control of offshore wind turbines.•Detailed design of the Extended KDamper is presented.•Nonlinear FEA is carried out accounting for the combined action of wind and sea wave excitation.•Computational Fluid Dynamics is used to extract the sea wave excitation.•Soil–structure interaction is considered for a monopile foundation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2022.113859</doi><orcidid>https://orcid.org/0000-0002-6619-7374</orcidid><orcidid>https://orcid.org/0000-0001-7056-9735</orcidid><orcidid>https://orcid.org/0000-0003-3110-7225</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2022-03, Vol.254, p.113859, Article 113859 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_journals_2639042867 |
source | Elsevier ScienceDirect Journals |
subjects | Absorption Computational fluid dynamics Computer applications Control systems Damping Dynamic structural analysis Dynamic vibration control Elastic foundations Extended KDamper Finite element method Fluid dynamics Fluid flow Hydrodynamics Mathematical models Mitigation Momentum theory Monopile SSI Negative stiffness Nonlinear FEM-CFD Nonlinear systems Offshore Offshore operations Offshore wind turbine Optimization Simulation Soil-structure interaction Springs (elastic) Stiffness Sustainability Turbines Vibration Vibration control Vibration isolators Water springs Wave excitation Wind loads Wind power Wind turbines |
title | An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20FEA-CFD%20simulation%20of%20offshore%20wind%20turbines%20with%20vibration%20control%20systems&rft.jtitle=Engineering%20structures&rft.au=Kampitsis,%20Andreas&rft.date=2022-03-01&rft.volume=254&rft.spage=113859&rft.pages=113859-&rft.artnum=113859&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2022.113859&rft_dat=%3Cproquest_cross%3E2639042867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639042867&rft_id=info:pmid/&rft_els_id=S0141029622000207&rfr_iscdi=true |