A combined calibration method of a mobile robotic measurement system for large-sized components

•An accurate calibration method of a mobile robotic measurement system is proposed.•The novel global and local calibration model based on MCCT is proposed.•The calibration method improves the overall measurement accuracy. Product quality control of large-sized components with complex supports requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2022-02, Vol.189, p.110543, Article 110543
Hauptverfasser: Zhou, Zhilong, Liu, Wei, Wang, Yuxin, Yu, Binchao, Cheng, Xikang, Yue, Yi, Zhang, Jiabo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110543
container_title Measurement : journal of the International Measurement Confederation
container_volume 189
creator Zhou, Zhilong
Liu, Wei
Wang, Yuxin
Yu, Binchao
Cheng, Xikang
Yue, Yi
Zhang, Jiabo
description •An accurate calibration method of a mobile robotic measurement system is proposed.•The novel global and local calibration model based on MCCT is proposed.•The calibration method improves the overall measurement accuracy. Product quality control of large-sized components with complex supports requires automatic and accurate 3D shape measurement. For accurate and efficient measurements of key local features (KLFs) on the mounting surface of multiple supports, we propose a flexible measurement method combining a laser tracker, a 3D scanner, and a mobile robot system. As for improving the overall measurement accuracy, we also introduce a calibration method based on a multidimensional combined collaboration target (MCCT) to establish correlation constraints between global and local calibration. Specifically, a global calibration method based on multidimensional geometric constraints provides a global measurement field. Additionally, a local calibration method derived from combination optimization model achieves accurate calibration of extrinsic parameters. We constructed the corresponding mobile robotic measurement system (MRMS) and conducted experiments. The experimental results demonstrate that the maximum and mean calibration errors are reduced from 0.045/0.0261 mm to 0.0231/0.0122 mm within 7 m, which features high accuracy.
doi_str_mv 10.1016/j.measurement.2021.110543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639042159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121014184</els_id><sourcerecordid>2639042159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b6c8934c8f88e0911073663fe0f5aab46e4f407948f81defcb7ab93fe7d8b9183</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOI6-Q8R1a9Jk2mY5DN5AcKPgLiTpiaa0zZhkhPHpzVAXs3R1Fue_8P0IXVNSUkLr274cQcVdgBGmVFakoiWlZMXZCVrQtmEFp9X7KVqQqmZFVXF6ji5i7AkhNRP1Ask1Nn7UboIOGzU4HVRyfsIjpE_fYW-xwqPXbgAcvPbJGXxUiOM-Jhix9QEPKnxAEd3PIcmPWz9lQbxEZ1YNEa7-7hK93d-9bh6L55eHp836uTCMi1To2rSCcdPatgUiMkLD6ppZIHallOY1cMtJI3gW0A6s0Y3SIv-brtWCtmyJbubcbfBfO4hJ9n4XplwpM7kgvKIrkVViVpngYwxg5Ta4UYW9pEQe9pS9PMKThz3lvGf2bmYvZIxvB0FG42Ay0LkAJsnOu3-k_AIuU4Yt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639042159</pqid></control><display><type>article</type><title>A combined calibration method of a mobile robotic measurement system for large-sized components</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Zhilong ; Liu, Wei ; Wang, Yuxin ; Yu, Binchao ; Cheng, Xikang ; Yue, Yi ; Zhang, Jiabo</creator><creatorcontrib>Zhou, Zhilong ; Liu, Wei ; Wang, Yuxin ; Yu, Binchao ; Cheng, Xikang ; Yue, Yi ; Zhang, Jiabo</creatorcontrib><description>•An accurate calibration method of a mobile robotic measurement system is proposed.•The novel global and local calibration model based on MCCT is proposed.•The calibration method improves the overall measurement accuracy. Product quality control of large-sized components with complex supports requires automatic and accurate 3D shape measurement. For accurate and efficient measurements of key local features (KLFs) on the mounting surface of multiple supports, we propose a flexible measurement method combining a laser tracker, a 3D scanner, and a mobile robot system. As for improving the overall measurement accuracy, we also introduce a calibration method based on a multidimensional combined collaboration target (MCCT) to establish correlation constraints between global and local calibration. Specifically, a global calibration method based on multidimensional geometric constraints provides a global measurement field. Additionally, a local calibration method derived from combination optimization model achieves accurate calibration of extrinsic parameters. We constructed the corresponding mobile robotic measurement system (MRMS) and conducted experiments. The experimental results demonstrate that the maximum and mean calibration errors are reduced from 0.045/0.0261 mm to 0.0231/0.0122 mm within 7 m, which features high accuracy.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.110543</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Accuracy ; Calibration ; Combined calibration ; Extrinsic parameters calibration ; Geometric constraints ; Global calibration ; Large-sized components ; Measurement ; Measurement methods ; Mobile robotic measurement system ; Optimization ; Optimization models ; Quality control ; Robots</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-02, Vol.189, p.110543, Article 110543</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b6c8934c8f88e0911073663fe0f5aab46e4f407948f81defcb7ab93fe7d8b9183</citedby><cites>FETCH-LOGICAL-c349t-b6c8934c8f88e0911073663fe0f5aab46e4f407948f81defcb7ab93fe7d8b9183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224121014184$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhou, Zhilong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Yuxin</creatorcontrib><creatorcontrib>Yu, Binchao</creatorcontrib><creatorcontrib>Cheng, Xikang</creatorcontrib><creatorcontrib>Yue, Yi</creatorcontrib><creatorcontrib>Zhang, Jiabo</creatorcontrib><title>A combined calibration method of a mobile robotic measurement system for large-sized components</title><title>Measurement : journal of the International Measurement Confederation</title><description>•An accurate calibration method of a mobile robotic measurement system is proposed.•The novel global and local calibration model based on MCCT is proposed.•The calibration method improves the overall measurement accuracy. Product quality control of large-sized components with complex supports requires automatic and accurate 3D shape measurement. For accurate and efficient measurements of key local features (KLFs) on the mounting surface of multiple supports, we propose a flexible measurement method combining a laser tracker, a 3D scanner, and a mobile robot system. As for improving the overall measurement accuracy, we also introduce a calibration method based on a multidimensional combined collaboration target (MCCT) to establish correlation constraints between global and local calibration. Specifically, a global calibration method based on multidimensional geometric constraints provides a global measurement field. Additionally, a local calibration method derived from combination optimization model achieves accurate calibration of extrinsic parameters. We constructed the corresponding mobile robotic measurement system (MRMS) and conducted experiments. The experimental results demonstrate that the maximum and mean calibration errors are reduced from 0.045/0.0261 mm to 0.0231/0.0122 mm within 7 m, which features high accuracy.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Combined calibration</subject><subject>Extrinsic parameters calibration</subject><subject>Geometric constraints</subject><subject>Global calibration</subject><subject>Large-sized components</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Mobile robotic measurement system</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Quality control</subject><subject>Robots</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKxDAUhoMoOI6-Q8R1a9Jk2mY5DN5AcKPgLiTpiaa0zZhkhPHpzVAXs3R1Fue_8P0IXVNSUkLr274cQcVdgBGmVFakoiWlZMXZCVrQtmEFp9X7KVqQqmZFVXF6ji5i7AkhNRP1Ask1Nn7UboIOGzU4HVRyfsIjpE_fYW-xwqPXbgAcvPbJGXxUiOM-Jhix9QEPKnxAEd3PIcmPWz9lQbxEZ1YNEa7-7hK93d-9bh6L55eHp836uTCMi1To2rSCcdPatgUiMkLD6ppZIHallOY1cMtJI3gW0A6s0Y3SIv-brtWCtmyJbubcbfBfO4hJ9n4XplwpM7kgvKIrkVViVpngYwxg5Ta4UYW9pEQe9pS9PMKThz3lvGf2bmYvZIxvB0FG42Ay0LkAJsnOu3-k_AIuU4Yt</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Zhou, Zhilong</creator><creator>Liu, Wei</creator><creator>Wang, Yuxin</creator><creator>Yu, Binchao</creator><creator>Cheng, Xikang</creator><creator>Yue, Yi</creator><creator>Zhang, Jiabo</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220215</creationdate><title>A combined calibration method of a mobile robotic measurement system for large-sized components</title><author>Zhou, Zhilong ; Liu, Wei ; Wang, Yuxin ; Yu, Binchao ; Cheng, Xikang ; Yue, Yi ; Zhang, Jiabo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b6c8934c8f88e0911073663fe0f5aab46e4f407948f81defcb7ab93fe7d8b9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Combined calibration</topic><topic>Extrinsic parameters calibration</topic><topic>Geometric constraints</topic><topic>Global calibration</topic><topic>Large-sized components</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Mobile robotic measurement system</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Quality control</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhilong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Yuxin</creatorcontrib><creatorcontrib>Yu, Binchao</creatorcontrib><creatorcontrib>Cheng, Xikang</creatorcontrib><creatorcontrib>Yue, Yi</creatorcontrib><creatorcontrib>Zhang, Jiabo</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhilong</au><au>Liu, Wei</au><au>Wang, Yuxin</au><au>Yu, Binchao</au><au>Cheng, Xikang</au><au>Yue, Yi</au><au>Zhang, Jiabo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined calibration method of a mobile robotic measurement system for large-sized components</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>189</volume><spage>110543</spage><pages>110543-</pages><artnum>110543</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•An accurate calibration method of a mobile robotic measurement system is proposed.•The novel global and local calibration model based on MCCT is proposed.•The calibration method improves the overall measurement accuracy. Product quality control of large-sized components with complex supports requires automatic and accurate 3D shape measurement. For accurate and efficient measurements of key local features (KLFs) on the mounting surface of multiple supports, we propose a flexible measurement method combining a laser tracker, a 3D scanner, and a mobile robot system. As for improving the overall measurement accuracy, we also introduce a calibration method based on a multidimensional combined collaboration target (MCCT) to establish correlation constraints between global and local calibration. Specifically, a global calibration method based on multidimensional geometric constraints provides a global measurement field. Additionally, a local calibration method derived from combination optimization model achieves accurate calibration of extrinsic parameters. We constructed the corresponding mobile robotic measurement system (MRMS) and conducted experiments. The experimental results demonstrate that the maximum and mean calibration errors are reduced from 0.045/0.0261 mm to 0.0231/0.0122 mm within 7 m, which features high accuracy.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.110543</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2022-02, Vol.189, p.110543, Article 110543
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2639042159
source Elsevier ScienceDirect Journals
subjects Accuracy
Calibration
Combined calibration
Extrinsic parameters calibration
Geometric constraints
Global calibration
Large-sized components
Measurement
Measurement methods
Mobile robotic measurement system
Optimization
Optimization models
Quality control
Robots
title A combined calibration method of a mobile robotic measurement system for large-sized components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20calibration%20method%20of%20a%20mobile%20robotic%20measurement%20system%20for%20large-sized%20components&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Zhou,%20Zhilong&rft.date=2022-02-15&rft.volume=189&rft.spage=110543&rft.pages=110543-&rft.artnum=110543&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.110543&rft_dat=%3Cproquest_cross%3E2639042159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639042159&rft_id=info:pmid/&rft_els_id=S0263224121014184&rfr_iscdi=true