Temperature-dependent magnetodielectric, magnetoimpedance, and magnetic field controlled dielectric relaxation response in KBiFe2O5

•KBiFe2O5 (KBFO) is prepared via a solid-state reaction route and crystallizes in the monoclinic phase (P2/c).•The observed magnetodielectric (MD) coupling suggests that Inverse Dzyaloshinskii-Moriya interaction could be the origin.•The maximum MD and magnetoimpedance (MI) couplings measured at room...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2022-05, Vol.549, p.169047, Article 169047
Hauptverfasser: Chandrakanta, K., Jena, R., Pal, P., Abdullah, Md.F., Sahu, D.P., Kaushik, S.D., Singh, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 169047
container_title Journal of magnetism and magnetic materials
container_volume 549
creator Chandrakanta, K.
Jena, R.
Pal, P.
Abdullah, Md.F.
Sahu, D.P.
Kaushik, S.D.
Singh, A.K.
description •KBiFe2O5 (KBFO) is prepared via a solid-state reaction route and crystallizes in the monoclinic phase (P2/c).•The observed magnetodielectric (MD) coupling suggests that Inverse Dzyaloshinskii-Moriya interaction could be the origin.•The maximum MD and magnetoimpedance (MI) couplings measured at room temperature are −0.6% and 0.7%, respectively.•The capacitive MI effect suggests that the observed MD in KBFO is intrinsic. In this work, polycrystalline KBiFe2O5 (KBFO), belonging to the brownmillerite class of monoclinic structure with space group P2/c, is synthesized using a solid-state reaction route. Magnetodielectric (MD) and magnetoimpedance (MI) characteristics of KBFO are studied over a wide temperature (10–300 K), magnetic field (0–1.3 T), and frequency (100 Hz to 1 MHz) range. Zero-field-cool (ZFC) and field-cool (FC) magnetization data show a bifurcation around 11 K, indicating blocking temperature (TB). At room temperature, MD and MI data as a function of the magnetic field shows maximum MD and MI coupling to be ∼−0.6% and ∼0.7%, respectively, at 50 kHz. With the decrease in temperature from 300 K to 50 K, magnetodielectric strength decreases (−0.6% to −0.06%), whereas magnetization increases from canted-antiferromagnetic (MS ≈ 0.16 emu g−1) to a weak ferromagnetic state (MS ≈ 0.44 emu g−1). It indicates the existence of Inverse Dzyaloshinskii-Moriya interaction causing MD coupling in KBFO. MD behavior is also reflected in magnetic field-dependent dielectric relaxation phenomena demonstrated through magnetic field-dependent activation energies. The difference in activation energies of magnetic field-dependent conduction mechanism (Eg ≈ 0.370 ± 0.018 eV) and MD loss relaxation (Eg ≈ 0.183 ± 0.006 eV) indicate both have a different origin. The presence of the capacitive MI effect demonstrates that the observed magnetodielectric coupling is intrinsic. The existence of both temperatures-dependent MD and MI coupling in KBFO makes it suitable for dynamic random access memory as well as novel magnetic sensors.
doi_str_mv 10.1016/j.jmmm.2022.169047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639039164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885322000282</els_id><sourcerecordid>2639039164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a14bcc1735898c0d48b103d45124bc14066de2cb5af6dec806e9de209a83ff883</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Fr9uar2ZT8KLiqih40XPIJlNJaZOadEXP_nGz7Io3TzO8874zw4PQGcEVwURcdFU3DENFMaUVEQ3miz00I3LBSr4QYh_NMMO8lLJmh-gopQ5jTLgUM_T9AsMIUU_rCKWFEbwFPxWDfvMwBeugBzNFZ-a_kst2q72BeaG93anOFG222sIEP8XQ92CLv2wRodefenLB5zaNwSconC8er90S6HN9gg5a3Sc43dVj9Lq8fbm5L5-e7x5urp5Kw6icSk34yhiyYLVspMGWyxXBzPKa0DwgHAthgZpVrdvcGIkFNFnAjZasbaVkx-h8u3eM4X0NaVJdWEefTyoqWINZQwTPLrp1mRhSitCqMbpBxy9FsNrAVp3awFYb2GoLO4cutyHI_384iCoZB5mSdTFDUDa4_-I_xGCKzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639039164</pqid></control><display><type>article</type><title>Temperature-dependent magnetodielectric, magnetoimpedance, and magnetic field controlled dielectric relaxation response in KBiFe2O5</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chandrakanta, K. ; Jena, R. ; Pal, P. ; Abdullah, Md.F. ; Sahu, D.P. ; Kaushik, S.D. ; Singh, A.K.</creator><creatorcontrib>Chandrakanta, K. ; Jena, R. ; Pal, P. ; Abdullah, Md.F. ; Sahu, D.P. ; Kaushik, S.D. ; Singh, A.K.</creatorcontrib><description>•KBiFe2O5 (KBFO) is prepared via a solid-state reaction route and crystallizes in the monoclinic phase (P2/c).•The observed magnetodielectric (MD) coupling suggests that Inverse Dzyaloshinskii-Moriya interaction could be the origin.•The maximum MD and magnetoimpedance (MI) couplings measured at room temperature are −0.6% and 0.7%, respectively.•The capacitive MI effect suggests that the observed MD in KBFO is intrinsic. In this work, polycrystalline KBiFe2O5 (KBFO), belonging to the brownmillerite class of monoclinic structure with space group P2/c, is synthesized using a solid-state reaction route. Magnetodielectric (MD) and magnetoimpedance (MI) characteristics of KBFO are studied over a wide temperature (10–300 K), magnetic field (0–1.3 T), and frequency (100 Hz to 1 MHz) range. Zero-field-cool (ZFC) and field-cool (FC) magnetization data show a bifurcation around 11 K, indicating blocking temperature (TB). At room temperature, MD and MI data as a function of the magnetic field shows maximum MD and MI coupling to be ∼−0.6% and ∼0.7%, respectively, at 50 kHz. With the decrease in temperature from 300 K to 50 K, magnetodielectric strength decreases (−0.6% to −0.06%), whereas magnetization increases from canted-antiferromagnetic (MS ≈ 0.16 emu g−1) to a weak ferromagnetic state (MS ≈ 0.44 emu g−1). It indicates the existence of Inverse Dzyaloshinskii-Moriya interaction causing MD coupling in KBFO. MD behavior is also reflected in magnetic field-dependent dielectric relaxation phenomena demonstrated through magnetic field-dependent activation energies. The difference in activation energies of magnetic field-dependent conduction mechanism (Eg ≈ 0.370 ± 0.018 eV) and MD loss relaxation (Eg ≈ 0.183 ± 0.006 eV) indicate both have a different origin. The presence of the capacitive MI effect demonstrates that the observed magnetodielectric coupling is intrinsic. The existence of both temperatures-dependent MD and MI coupling in KBFO makes it suitable for dynamic random access memory as well as novel magnetic sensors.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2022.169047</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activation energy ; Antiferromagnetism ; Brownmillerite ; Calcium aluminum ferrite ; Coupling ; Dielectric relaxation ; Dynamic random access memory ; Ferromagnetism ; Low-temperature ; Magnetic fields ; Magnetic induction ; Magnetization ; Magnetoconductance ; Magnetodielectric ; Magnetoimpedance ; Random access memory ; Room temperature ; Temperature ; Temperature dependence</subject><ispartof>Journal of magnetism and magnetic materials, 2022-05, Vol.549, p.169047, Article 169047</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a14bcc1735898c0d48b103d45124bc14066de2cb5af6dec806e9de209a83ff883</citedby><cites>FETCH-LOGICAL-c328t-a14bcc1735898c0d48b103d45124bc14066de2cb5af6dec806e9de209a83ff883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2022.169047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chandrakanta, K.</creatorcontrib><creatorcontrib>Jena, R.</creatorcontrib><creatorcontrib>Pal, P.</creatorcontrib><creatorcontrib>Abdullah, Md.F.</creatorcontrib><creatorcontrib>Sahu, D.P.</creatorcontrib><creatorcontrib>Kaushik, S.D.</creatorcontrib><creatorcontrib>Singh, A.K.</creatorcontrib><title>Temperature-dependent magnetodielectric, magnetoimpedance, and magnetic field controlled dielectric relaxation response in KBiFe2O5</title><title>Journal of magnetism and magnetic materials</title><description>•KBiFe2O5 (KBFO) is prepared via a solid-state reaction route and crystallizes in the monoclinic phase (P2/c).•The observed magnetodielectric (MD) coupling suggests that Inverse Dzyaloshinskii-Moriya interaction could be the origin.•The maximum MD and magnetoimpedance (MI) couplings measured at room temperature are −0.6% and 0.7%, respectively.•The capacitive MI effect suggests that the observed MD in KBFO is intrinsic. In this work, polycrystalline KBiFe2O5 (KBFO), belonging to the brownmillerite class of monoclinic structure with space group P2/c, is synthesized using a solid-state reaction route. Magnetodielectric (MD) and magnetoimpedance (MI) characteristics of KBFO are studied over a wide temperature (10–300 K), magnetic field (0–1.3 T), and frequency (100 Hz to 1 MHz) range. Zero-field-cool (ZFC) and field-cool (FC) magnetization data show a bifurcation around 11 K, indicating blocking temperature (TB). At room temperature, MD and MI data as a function of the magnetic field shows maximum MD and MI coupling to be ∼−0.6% and ∼0.7%, respectively, at 50 kHz. With the decrease in temperature from 300 K to 50 K, magnetodielectric strength decreases (−0.6% to −0.06%), whereas magnetization increases from canted-antiferromagnetic (MS ≈ 0.16 emu g−1) to a weak ferromagnetic state (MS ≈ 0.44 emu g−1). It indicates the existence of Inverse Dzyaloshinskii-Moriya interaction causing MD coupling in KBFO. MD behavior is also reflected in magnetic field-dependent dielectric relaxation phenomena demonstrated through magnetic field-dependent activation energies. The difference in activation energies of magnetic field-dependent conduction mechanism (Eg ≈ 0.370 ± 0.018 eV) and MD loss relaxation (Eg ≈ 0.183 ± 0.006 eV) indicate both have a different origin. The presence of the capacitive MI effect demonstrates that the observed magnetodielectric coupling is intrinsic. The existence of both temperatures-dependent MD and MI coupling in KBFO makes it suitable for dynamic random access memory as well as novel magnetic sensors.</description><subject>Activation energy</subject><subject>Antiferromagnetism</subject><subject>Brownmillerite</subject><subject>Calcium aluminum ferrite</subject><subject>Coupling</subject><subject>Dielectric relaxation</subject><subject>Dynamic random access memory</subject><subject>Ferromagnetism</subject><subject>Low-temperature</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Magnetization</subject><subject>Magnetoconductance</subject><subject>Magnetodielectric</subject><subject>Magnetoimpedance</subject><subject>Random access memory</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Fr9uar2ZT8KLiqih40XPIJlNJaZOadEXP_nGz7Io3TzO8874zw4PQGcEVwURcdFU3DENFMaUVEQ3miz00I3LBSr4QYh_NMMO8lLJmh-gopQ5jTLgUM_T9AsMIUU_rCKWFEbwFPxWDfvMwBeugBzNFZ-a_kst2q72BeaG93anOFG222sIEP8XQ92CLv2wRodefenLB5zaNwSconC8er90S6HN9gg5a3Sc43dVj9Lq8fbm5L5-e7x5urp5Kw6icSk34yhiyYLVspMGWyxXBzPKa0DwgHAthgZpVrdvcGIkFNFnAjZasbaVkx-h8u3eM4X0NaVJdWEefTyoqWINZQwTPLrp1mRhSitCqMbpBxy9FsNrAVp3awFYb2GoLO4cutyHI_384iCoZB5mSdTFDUDa4_-I_xGCKzg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Chandrakanta, K.</creator><creator>Jena, R.</creator><creator>Pal, P.</creator><creator>Abdullah, Md.F.</creator><creator>Sahu, D.P.</creator><creator>Kaushik, S.D.</creator><creator>Singh, A.K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220501</creationdate><title>Temperature-dependent magnetodielectric, magnetoimpedance, and magnetic field controlled dielectric relaxation response in KBiFe2O5</title><author>Chandrakanta, K. ; Jena, R. ; Pal, P. ; Abdullah, Md.F. ; Sahu, D.P. ; Kaushik, S.D. ; Singh, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a14bcc1735898c0d48b103d45124bc14066de2cb5af6dec806e9de209a83ff883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activation energy</topic><topic>Antiferromagnetism</topic><topic>Brownmillerite</topic><topic>Calcium aluminum ferrite</topic><topic>Coupling</topic><topic>Dielectric relaxation</topic><topic>Dynamic random access memory</topic><topic>Ferromagnetism</topic><topic>Low-temperature</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Magnetization</topic><topic>Magnetoconductance</topic><topic>Magnetodielectric</topic><topic>Magnetoimpedance</topic><topic>Random access memory</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrakanta, K.</creatorcontrib><creatorcontrib>Jena, R.</creatorcontrib><creatorcontrib>Pal, P.</creatorcontrib><creatorcontrib>Abdullah, Md.F.</creatorcontrib><creatorcontrib>Sahu, D.P.</creatorcontrib><creatorcontrib>Kaushik, S.D.</creatorcontrib><creatorcontrib>Singh, A.K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrakanta, K.</au><au>Jena, R.</au><au>Pal, P.</au><au>Abdullah, Md.F.</au><au>Sahu, D.P.</au><au>Kaushik, S.D.</au><au>Singh, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-dependent magnetodielectric, magnetoimpedance, and magnetic field controlled dielectric relaxation response in KBiFe2O5</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>549</volume><spage>169047</spage><pages>169047-</pages><artnum>169047</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•KBiFe2O5 (KBFO) is prepared via a solid-state reaction route and crystallizes in the monoclinic phase (P2/c).•The observed magnetodielectric (MD) coupling suggests that Inverse Dzyaloshinskii-Moriya interaction could be the origin.•The maximum MD and magnetoimpedance (MI) couplings measured at room temperature are −0.6% and 0.7%, respectively.•The capacitive MI effect suggests that the observed MD in KBFO is intrinsic. In this work, polycrystalline KBiFe2O5 (KBFO), belonging to the brownmillerite class of monoclinic structure with space group P2/c, is synthesized using a solid-state reaction route. Magnetodielectric (MD) and magnetoimpedance (MI) characteristics of KBFO are studied over a wide temperature (10–300 K), magnetic field (0–1.3 T), and frequency (100 Hz to 1 MHz) range. Zero-field-cool (ZFC) and field-cool (FC) magnetization data show a bifurcation around 11 K, indicating blocking temperature (TB). At room temperature, MD and MI data as a function of the magnetic field shows maximum MD and MI coupling to be ∼−0.6% and ∼0.7%, respectively, at 50 kHz. With the decrease in temperature from 300 K to 50 K, magnetodielectric strength decreases (−0.6% to −0.06%), whereas magnetization increases from canted-antiferromagnetic (MS ≈ 0.16 emu g−1) to a weak ferromagnetic state (MS ≈ 0.44 emu g−1). It indicates the existence of Inverse Dzyaloshinskii-Moriya interaction causing MD coupling in KBFO. MD behavior is also reflected in magnetic field-dependent dielectric relaxation phenomena demonstrated through magnetic field-dependent activation energies. The difference in activation energies of magnetic field-dependent conduction mechanism (Eg ≈ 0.370 ± 0.018 eV) and MD loss relaxation (Eg ≈ 0.183 ± 0.006 eV) indicate both have a different origin. The presence of the capacitive MI effect demonstrates that the observed magnetodielectric coupling is intrinsic. The existence of both temperatures-dependent MD and MI coupling in KBFO makes it suitable for dynamic random access memory as well as novel magnetic sensors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2022.169047</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2022-05, Vol.549, p.169047, Article 169047
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2639039164
source Elsevier ScienceDirect Journals Complete
subjects Activation energy
Antiferromagnetism
Brownmillerite
Calcium aluminum ferrite
Coupling
Dielectric relaxation
Dynamic random access memory
Ferromagnetism
Low-temperature
Magnetic fields
Magnetic induction
Magnetization
Magnetoconductance
Magnetodielectric
Magnetoimpedance
Random access memory
Room temperature
Temperature
Temperature dependence
title Temperature-dependent magnetodielectric, magnetoimpedance, and magnetic field controlled dielectric relaxation response in KBiFe2O5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-dependent%20magnetodielectric,%20magnetoimpedance,%20and%20magnetic%20field%20controlled%20dielectric%20relaxation%20response%20in%20KBiFe2O5&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Chandrakanta,%20K.&rft.date=2022-05-01&rft.volume=549&rft.spage=169047&rft.pages=169047-&rft.artnum=169047&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2022.169047&rft_dat=%3Cproquest_cross%3E2639039164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639039164&rft_id=info:pmid/&rft_els_id=S0304885322000282&rfr_iscdi=true