Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification

•Add a differential sequence to reduce the impact of noise in ECG signal.•Add a variable nonlinear layer to enhance the non-linear capability of the model.•Adaptive Learning rate is used to converge the training process.•The performance of proposed CNN is better than the other widely used algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2022-02, Vol.189, p.110471, Article 110471
Hauptverfasser: Xiong, Yingnan, Wang, Lin, Wang, Qingnan, Liu, Shan, Kou, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110471
container_title Measurement : journal of the International Measurement Confederation
container_volume 189
creator Xiong, Yingnan
Wang, Lin
Wang, Qingnan
Liu, Shan
Kou, Bo
description •Add a differential sequence to reduce the impact of noise in ECG signal.•Add a variable nonlinear layer to enhance the non-linear capability of the model.•Adaptive Learning rate is used to converge the training process.•The performance of proposed CNN is better than the other widely used algorithms.•The proposed algorithm can serve as an adjunct tool to assist clinicians in confirming their diagnosis. In this paper, an improved convolutional neural network (CNN) named Feature Selection CNN (FS-CNN) and Synthetic Minority Over-sampling Technique (SMOTE) named Multiply Stochastic SMOTE (MS-SMOTE) are proposed for imbalanced ECG multi-factor classification. FS-CNN includes convolutional expression layer, multi-residual block, and decision layer. The primary purpose of FS-CNN is to find the most influential features during automatic model optimization dynamically. MS-SMOTE combines the advantage of SMOTE and borderline SMOTE to balance the number of different categories. By dynamically selecting SMOTE and borderline SMOTE based on the proportion of data, the synthetic data can have a better category property. Comparing to other wide-used algorithms, our method is better than most other algorithms in many indicators. And in simulation 2, our method can deal with a large number of ECG multi-factor data classifications. Also, two self-controlled experiments are designed to examine how different parameters affect the result of the above problem.
doi_str_mv 10.1016/j.measurement.2021.110471
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639038249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121013567</els_id><sourcerecordid>2639038249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4e718dbd784bba1b247f6c726393a649a47093df004a4bfef208bd7791f2aba3</originalsourceid><addsrcrecordid>eNqNkL1OwzAURi0EEqXwDkbMKf5TEo8oagtSEUsHNstxbOE0iYvttOLtcQgDI9Md7rnf1XcAuMdohRHOH9tVr2UYve71EFcEEbzCGLECX4AFLguaMUzeL8ECkZxmhDB8DW5CaBFCOeX5Ahxe-qN3J91A5YaT68Zo3SA7OOjR_4x4dv4AzzZ-QKNlTJ9g0J1WEweN89D2tezkoFLEutrC17GLNttIFdNOdTIEa6ySE34Lrozsgr77nUuw36z31XO2e9u-VE-7TFHGY8Z0gcumboqS1bXENWGFyVWRCnAqc8YlKxCnjUGISVYbbQgqE11wbIisJV2Chzk2FfscdYiidaNPpYKYMhAtCeOJ4jOlvAvBayOO3vbSfwmMxKRWtOKPWjGpFbPadFvNtzq1OFntRVBWTwqsT2ZE4-w_Ur4BqqaKsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639038249</pqid></control><display><type>article</type><title>Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification</title><source>Elsevier ScienceDirect Journals</source><creator>Xiong, Yingnan ; Wang, Lin ; Wang, Qingnan ; Liu, Shan ; Kou, Bo</creator><creatorcontrib>Xiong, Yingnan ; Wang, Lin ; Wang, Qingnan ; Liu, Shan ; Kou, Bo</creatorcontrib><description>•Add a differential sequence to reduce the impact of noise in ECG signal.•Add a variable nonlinear layer to enhance the non-linear capability of the model.•Adaptive Learning rate is used to converge the training process.•The performance of proposed CNN is better than the other widely used algorithms.•The proposed algorithm can serve as an adjunct tool to assist clinicians in confirming their diagnosis. In this paper, an improved convolutional neural network (CNN) named Feature Selection CNN (FS-CNN) and Synthetic Minority Over-sampling Technique (SMOTE) named Multiply Stochastic SMOTE (MS-SMOTE) are proposed for imbalanced ECG multi-factor classification. FS-CNN includes convolutional expression layer, multi-residual block, and decision layer. The primary purpose of FS-CNN is to find the most influential features during automatic model optimization dynamically. MS-SMOTE combines the advantage of SMOTE and borderline SMOTE to balance the number of different categories. By dynamically selecting SMOTE and borderline SMOTE based on the proportion of data, the synthetic data can have a better category property. Comparing to other wide-used algorithms, our method is better than most other algorithms in many indicators. And in simulation 2, our method can deal with a large number of ECG multi-factor data classifications. Also, two self-controlled experiments are designed to examine how different parameters affect the result of the above problem.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.110471</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Algorithms ; Arrhythmia detection ; Artificial neural networks ; Classification ; Convolutional neural network ; Electrocardiogram ; Neural networks ; Optimization ; Synthetic minority over-sampling technique</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-02, Vol.189, p.110471, Article 110471</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4e718dbd784bba1b247f6c726393a649a47093df004a4bfef208bd7791f2aba3</citedby><cites>FETCH-LOGICAL-c349t-4e718dbd784bba1b247f6c726393a649a47093df004a4bfef208bd7791f2aba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224121013567$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiong, Yingnan</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wang, Qingnan</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Kou, Bo</creatorcontrib><title>Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Add a differential sequence to reduce the impact of noise in ECG signal.•Add a variable nonlinear layer to enhance the non-linear capability of the model.•Adaptive Learning rate is used to converge the training process.•The performance of proposed CNN is better than the other widely used algorithms.•The proposed algorithm can serve as an adjunct tool to assist clinicians in confirming their diagnosis. In this paper, an improved convolutional neural network (CNN) named Feature Selection CNN (FS-CNN) and Synthetic Minority Over-sampling Technique (SMOTE) named Multiply Stochastic SMOTE (MS-SMOTE) are proposed for imbalanced ECG multi-factor classification. FS-CNN includes convolutional expression layer, multi-residual block, and decision layer. The primary purpose of FS-CNN is to find the most influential features during automatic model optimization dynamically. MS-SMOTE combines the advantage of SMOTE and borderline SMOTE to balance the number of different categories. By dynamically selecting SMOTE and borderline SMOTE based on the proportion of data, the synthetic data can have a better category property. Comparing to other wide-used algorithms, our method is better than most other algorithms in many indicators. And in simulation 2, our method can deal with a large number of ECG multi-factor data classifications. Also, two self-controlled experiments are designed to examine how different parameters affect the result of the above problem.</description><subject>Algorithms</subject><subject>Arrhythmia detection</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional neural network</subject><subject>Electrocardiogram</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Synthetic minority over-sampling technique</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkL1OwzAURi0EEqXwDkbMKf5TEo8oagtSEUsHNstxbOE0iYvttOLtcQgDI9Md7rnf1XcAuMdohRHOH9tVr2UYve71EFcEEbzCGLECX4AFLguaMUzeL8ECkZxmhDB8DW5CaBFCOeX5Ahxe-qN3J91A5YaT68Zo3SA7OOjR_4x4dv4AzzZ-QKNlTJ9g0J1WEweN89D2tezkoFLEutrC17GLNttIFdNOdTIEa6ySE34Lrozsgr77nUuw36z31XO2e9u-VE-7TFHGY8Z0gcumboqS1bXENWGFyVWRCnAqc8YlKxCnjUGISVYbbQgqE11wbIisJV2Chzk2FfscdYiidaNPpYKYMhAtCeOJ4jOlvAvBayOO3vbSfwmMxKRWtOKPWjGpFbPadFvNtzq1OFntRVBWTwqsT2ZE4-w_Ur4BqqaKsQ</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Xiong, Yingnan</creator><creator>Wang, Lin</creator><creator>Wang, Qingnan</creator><creator>Liu, Shan</creator><creator>Kou, Bo</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220215</creationdate><title>Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification</title><author>Xiong, Yingnan ; Wang, Lin ; Wang, Qingnan ; Liu, Shan ; Kou, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4e718dbd784bba1b247f6c726393a649a47093df004a4bfef208bd7791f2aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arrhythmia detection</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional neural network</topic><topic>Electrocardiogram</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Synthetic minority over-sampling technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yingnan</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wang, Qingnan</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Kou, Bo</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yingnan</au><au>Wang, Lin</au><au>Wang, Qingnan</au><au>Liu, Shan</au><au>Kou, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>189</volume><spage>110471</spage><pages>110471-</pages><artnum>110471</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Add a differential sequence to reduce the impact of noise in ECG signal.•Add a variable nonlinear layer to enhance the non-linear capability of the model.•Adaptive Learning rate is used to converge the training process.•The performance of proposed CNN is better than the other widely used algorithms.•The proposed algorithm can serve as an adjunct tool to assist clinicians in confirming their diagnosis. In this paper, an improved convolutional neural network (CNN) named Feature Selection CNN (FS-CNN) and Synthetic Minority Over-sampling Technique (SMOTE) named Multiply Stochastic SMOTE (MS-SMOTE) are proposed for imbalanced ECG multi-factor classification. FS-CNN includes convolutional expression layer, multi-residual block, and decision layer. The primary purpose of FS-CNN is to find the most influential features during automatic model optimization dynamically. MS-SMOTE combines the advantage of SMOTE and borderline SMOTE to balance the number of different categories. By dynamically selecting SMOTE and borderline SMOTE based on the proportion of data, the synthetic data can have a better category property. Comparing to other wide-used algorithms, our method is better than most other algorithms in many indicators. And in simulation 2, our method can deal with a large number of ECG multi-factor data classifications. Also, two self-controlled experiments are designed to examine how different parameters affect the result of the above problem.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.110471</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2022-02, Vol.189, p.110471, Article 110471
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2639038249
source Elsevier ScienceDirect Journals
subjects Algorithms
Arrhythmia detection
Artificial neural networks
Classification
Convolutional neural network
Electrocardiogram
Neural networks
Optimization
Synthetic minority over-sampling technique
title Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20convolutional%20neural%20network%20with%20feature%20selection%20for%20imbalanced%20ECG%20Multi-Factor%20classification&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Xiong,%20Yingnan&rft.date=2022-02-15&rft.volume=189&rft.spage=110471&rft.pages=110471-&rft.artnum=110471&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.110471&rft_dat=%3Cproquest_cross%3E2639038249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639038249&rft_id=info:pmid/&rft_els_id=S0263224121013567&rfr_iscdi=true