Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells

[Display omitted] •A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2022-02, Vol.233, p.326-336
Hauptverfasser: Haider, Muhammad Irfan, Fakharuddin, Azhar, Ahmed, Safeer, Sultan, Muhammad, Schmidt-Mende, Lukas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue
container_start_page 326
container_title Solar energy
container_volume 233
creator Haider, Muhammad Irfan
Fakharuddin, Azhar
Ahmed, Safeer
Sultan, Muhammad
Schmidt-Mende, Lukas
description [Display omitted] •A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation. The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation.
doi_str_mv 10.1016/j.solener.2022.01.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639038029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X22000263</els_id><sourcerecordid>2639038029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</originalsourceid><addsrcrecordid>eNqFkEFrGzEQhUVoIa7bn1AQ5LzbkbRZaU8lhDQNOMmlhdyEqh0lcteSI8kmS_98ZOx7LzOHee_NzEfIVwYtA9Z_W7c5ThgwtRw4b4G1wMUZWbBOsobxS_mBLACEamDgT-fkU85rACaZkgvy7z6Ou8kUH57piA5tqS1kX2YaHX3wj_SlZtOSTMjbmAqdzIyJ7r2hZRcOLh8KJmesNxONb_MzBppL9PbFxw2WNFcB3WKK-_zXF6T1VJOoxWnKn8lHZ6aMX059SX7_uPl1_bNZPd7eXV-tGiuELI0zpuuQKytBogSOaETfDTCoXrlaDSinmO2VHHpwIGUHRjg7SvkHlBIgluTimLtN8XWHueh13KVQV2rei6GSAT5U1eVRZVPMOaHT2-Q3Js2agT5w1mt94qwPnDUwXTlX3_ejD-sLe1-n2XoMFkefKk49Rv-fhHcMZote</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639038029</pqid></control><display><type>article</type><title>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Ahmed, Safeer ; Sultan, Muhammad ; Schmidt-Mende, Lukas</creator><creatorcontrib>Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Ahmed, Safeer ; Sultan, Muhammad ; Schmidt-Mende, Lukas</creatorcontrib><description>[Display omitted] •A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation. The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2022.01.023</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Density ; Energy conversion efficiency ; Heat treatment ; Interface stability ; Interfacial defects ; Interfacial modification ; Oxygen ; Oxygen stoichiometry ; Perovskite solar cells ; Perovskites ; Photovoltaic cells ; Recombination ; Room temperature ; Solar cells ; Solar energy ; Stability ; Stoichiometry ; Surface properties</subject><ispartof>Solar energy, 2022-02, Vol.233, p.326-336</ispartof><rights>2022 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</citedby><cites>FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X22000263$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Ahmed, Safeer</creatorcontrib><creatorcontrib>Sultan, Muhammad</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><title>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</title><title>Solar energy</title><description>[Display omitted] •A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation. The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation.</description><subject>Density</subject><subject>Energy conversion efficiency</subject><subject>Heat treatment</subject><subject>Interface stability</subject><subject>Interfacial defects</subject><subject>Interfacial modification</subject><subject>Oxygen</subject><subject>Oxygen stoichiometry</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Recombination</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Stability</subject><subject>Stoichiometry</subject><subject>Surface properties</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFrGzEQhUVoIa7bn1AQ5LzbkbRZaU8lhDQNOMmlhdyEqh0lcteSI8kmS_98ZOx7LzOHee_NzEfIVwYtA9Z_W7c5ThgwtRw4b4G1wMUZWbBOsobxS_mBLACEamDgT-fkU85rACaZkgvy7z6Ou8kUH57piA5tqS1kX2YaHX3wj_SlZtOSTMjbmAqdzIyJ7r2hZRcOLh8KJmesNxONb_MzBppL9PbFxw2WNFcB3WKK-_zXF6T1VJOoxWnKn8lHZ6aMX059SX7_uPl1_bNZPd7eXV-tGiuELI0zpuuQKytBogSOaETfDTCoXrlaDSinmO2VHHpwIGUHRjg7SvkHlBIgluTimLtN8XWHueh13KVQV2rei6GSAT5U1eVRZVPMOaHT2-Q3Js2agT5w1mt94qwPnDUwXTlX3_ejD-sLe1-n2XoMFkefKk49Rv-fhHcMZote</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Haider, Muhammad Irfan</creator><creator>Fakharuddin, Azhar</creator><creator>Ahmed, Safeer</creator><creator>Sultan, Muhammad</creator><creator>Schmidt-Mende, Lukas</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202202</creationdate><title>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</title><author>Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Ahmed, Safeer ; Sultan, Muhammad ; Schmidt-Mende, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density</topic><topic>Energy conversion efficiency</topic><topic>Heat treatment</topic><topic>Interface stability</topic><topic>Interfacial defects</topic><topic>Interfacial modification</topic><topic>Oxygen</topic><topic>Oxygen stoichiometry</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Recombination</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Stability</topic><topic>Stoichiometry</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Ahmed, Safeer</creatorcontrib><creatorcontrib>Sultan, Muhammad</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, Muhammad Irfan</au><au>Fakharuddin, Azhar</au><au>Ahmed, Safeer</au><au>Sultan, Muhammad</au><au>Schmidt-Mende, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</atitle><jtitle>Solar energy</jtitle><date>2022-02</date><risdate>2022</risdate><volume>233</volume><spage>326</spage><epage>336</epage><pages>326-336</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>[Display omitted] •A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation. The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2022.01.023</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2022-02, Vol.233, p.326-336
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2639038029
source Elsevier ScienceDirect Journals
subjects Density
Energy conversion efficiency
Heat treatment
Interface stability
Interfacial defects
Interfacial modification
Oxygen
Oxygen stoichiometry
Perovskite solar cells
Perovskites
Photovoltaic cells
Recombination
Room temperature
Solar cells
Solar energy
Stability
Stoichiometry
Surface properties
title Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20defect%20density%20of%20NiO%20hole%20transport%20layer%20via%20tuning%20interfacial%20oxygen%20stoichiometry%20in%20perovskite%20solar%20cells&rft.jtitle=Solar%20energy&rft.au=Haider,%20Muhammad%20Irfan&rft.date=2022-02&rft.volume=233&rft.spage=326&rft.epage=336&rft.pages=326-336&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2022.01.023&rft_dat=%3Cproquest_cross%3E2639038029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639038029&rft_id=info:pmid/&rft_els_id=S0038092X22000263&rfr_iscdi=true