Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells
[Display omitted] •A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance a...
Gespeichert in:
Veröffentlicht in: | Solar energy 2022-02, Vol.233, p.326-336 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | |
container_start_page | 326 |
container_title | Solar energy |
container_volume | 233 |
creator | Haider, Muhammad Irfan Fakharuddin, Azhar Ahmed, Safeer Sultan, Muhammad Schmidt-Mende, Lukas |
description | [Display omitted]
•A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation.
The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation. |
doi_str_mv | 10.1016/j.solener.2022.01.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639038029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X22000263</els_id><sourcerecordid>2639038029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</originalsourceid><addsrcrecordid>eNqFkEFrGzEQhUVoIa7bn1AQ5LzbkbRZaU8lhDQNOMmlhdyEqh0lcteSI8kmS_98ZOx7LzOHee_NzEfIVwYtA9Z_W7c5ThgwtRw4b4G1wMUZWbBOsobxS_mBLACEamDgT-fkU85rACaZkgvy7z6Ou8kUH57piA5tqS1kX2YaHX3wj_SlZtOSTMjbmAqdzIyJ7r2hZRcOLh8KJmesNxONb_MzBppL9PbFxw2WNFcB3WKK-_zXF6T1VJOoxWnKn8lHZ6aMX059SX7_uPl1_bNZPd7eXV-tGiuELI0zpuuQKytBogSOaETfDTCoXrlaDSinmO2VHHpwIGUHRjg7SvkHlBIgluTimLtN8XWHueh13KVQV2rei6GSAT5U1eVRZVPMOaHT2-Q3Js2agT5w1mt94qwPnDUwXTlX3_ejD-sLe1-n2XoMFkefKk49Rv-fhHcMZote</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639038029</pqid></control><display><type>article</type><title>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Ahmed, Safeer ; Sultan, Muhammad ; Schmidt-Mende, Lukas</creator><creatorcontrib>Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Ahmed, Safeer ; Sultan, Muhammad ; Schmidt-Mende, Lukas</creatorcontrib><description>[Display omitted]
•A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation.
The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2022.01.023</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Density ; Energy conversion efficiency ; Heat treatment ; Interface stability ; Interfacial defects ; Interfacial modification ; Oxygen ; Oxygen stoichiometry ; Perovskite solar cells ; Perovskites ; Photovoltaic cells ; Recombination ; Room temperature ; Solar cells ; Solar energy ; Stability ; Stoichiometry ; Surface properties</subject><ispartof>Solar energy, 2022-02, Vol.233, p.326-336</ispartof><rights>2022 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</citedby><cites>FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X22000263$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Ahmed, Safeer</creatorcontrib><creatorcontrib>Sultan, Muhammad</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><title>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</title><title>Solar energy</title><description>[Display omitted]
•A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation.
The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation.</description><subject>Density</subject><subject>Energy conversion efficiency</subject><subject>Heat treatment</subject><subject>Interface stability</subject><subject>Interfacial defects</subject><subject>Interfacial modification</subject><subject>Oxygen</subject><subject>Oxygen stoichiometry</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Recombination</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Stability</subject><subject>Stoichiometry</subject><subject>Surface properties</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFrGzEQhUVoIa7bn1AQ5LzbkbRZaU8lhDQNOMmlhdyEqh0lcteSI8kmS_98ZOx7LzOHee_NzEfIVwYtA9Z_W7c5ThgwtRw4b4G1wMUZWbBOsobxS_mBLACEamDgT-fkU85rACaZkgvy7z6Ou8kUH57piA5tqS1kX2YaHX3wj_SlZtOSTMjbmAqdzIyJ7r2hZRcOLh8KJmesNxONb_MzBppL9PbFxw2WNFcB3WKK-_zXF6T1VJOoxWnKn8lHZ6aMX059SX7_uPl1_bNZPd7eXV-tGiuELI0zpuuQKytBogSOaETfDTCoXrlaDSinmO2VHHpwIGUHRjg7SvkHlBIgluTimLtN8XWHueh13KVQV2rei6GSAT5U1eVRZVPMOaHT2-Q3Js2agT5w1mt94qwPnDUwXTlX3_ejD-sLe1-n2XoMFkefKk49Rv-fhHcMZote</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Haider, Muhammad Irfan</creator><creator>Fakharuddin, Azhar</creator><creator>Ahmed, Safeer</creator><creator>Sultan, Muhammad</creator><creator>Schmidt-Mende, Lukas</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202202</creationdate><title>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</title><author>Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Ahmed, Safeer ; Sultan, Muhammad ; Schmidt-Mende, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-faa44e28c707e702eea364909868f098a08f81c687960f07740a3fcd77b088303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density</topic><topic>Energy conversion efficiency</topic><topic>Heat treatment</topic><topic>Interface stability</topic><topic>Interfacial defects</topic><topic>Interfacial modification</topic><topic>Oxygen</topic><topic>Oxygen stoichiometry</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Recombination</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Stability</topic><topic>Stoichiometry</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Ahmed, Safeer</creatorcontrib><creatorcontrib>Sultan, Muhammad</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, Muhammad Irfan</au><au>Fakharuddin, Azhar</au><au>Ahmed, Safeer</au><au>Sultan, Muhammad</au><au>Schmidt-Mende, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells</atitle><jtitle>Solar energy</jtitle><date>2022-02</date><risdate>2022</risdate><volume>233</volume><spage>326</spage><epage>336</epage><pages>326-336</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>[Display omitted]
•A systematic control of oxygen stoichiometry at NiOx/perovskite interface by thermal treatment.•PSCs with r-NiOx show 20% improved PCE and extended stability in comparison to other counterparts.•A higher defect density at the o-NiOx/perovskite interface leads to poor performance and faster degradation.
The role of oxygen stoichiometry towards the surface properties of NiOx and its influence over perovskite film morphology, band alignment and charge extraction at NiOx/MAPbI3 interface in inverted perovskite solar cells (PSCs) is analyzed. The oxygen stoichiometry was systematically tuned via thermal treatment of NiOx film in oxygen-rich (o- NiOx) and oxygen-deficient (r- NiOx) atmospheres. These processing conditions impact the defect density and conductivity of NiOx films and thus on the rates of surface recombination, the power conversion efficiency (PCE) and the device stability. We note that the PSCs with r- NiOx show a 20% improvement in PCE in comparison to o- NiOx counterparts. Room-temperature stability measurements for a period of several months demonstrates that the r- NiOx/MAPbI3 interface prolongs the device stability and retains 95% of its initial PCE, whereas a higher defect density due to the presence of excess oxygen at the o- NiOx/perovskite interface leads to faster degradation.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2022.01.023</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2022-02, Vol.233, p.326-336 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_2639038029 |
source | Elsevier ScienceDirect Journals |
subjects | Density Energy conversion efficiency Heat treatment Interface stability Interfacial defects Interfacial modification Oxygen Oxygen stoichiometry Perovskite solar cells Perovskites Photovoltaic cells Recombination Room temperature Solar cells Solar energy Stability Stoichiometry Surface properties |
title | Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20defect%20density%20of%20NiO%20hole%20transport%20layer%20via%20tuning%20interfacial%20oxygen%20stoichiometry%20in%20perovskite%20solar%20cells&rft.jtitle=Solar%20energy&rft.au=Haider,%20Muhammad%20Irfan&rft.date=2022-02&rft.volume=233&rft.spage=326&rft.epage=336&rft.pages=326-336&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2022.01.023&rft_dat=%3Cproquest_cross%3E2639038029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639038029&rft_id=info:pmid/&rft_els_id=S0038092X22000263&rfr_iscdi=true |