Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers

•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz. The ferr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2022-04, Vol.547, p.168955, Article 168955
Hauptverfasser: Zhou, Aoran, Li, Yuanzhe, Zhang, Shouheng, Jin, Zhejun, Guo, Wenhui, Xu, Feng, Wang, Xia, Cao, Derang, Xu, Jie, Zhao, Guoxia, Zong, Weihua, Li, Shandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 168955
container_title Journal of magnetism and magnetic materials
container_volume 547
creator Zhou, Aoran
Li, Yuanzhe
Zhang, Shouheng
Jin, Zhejun
Guo, Wenhui
Xu, Feng
Wang, Xia
Cao, Derang
Xu, Jie
Zhao, Guoxia
Zong, Weihua
Li, Shandong
description •FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz. The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits.
doi_str_mv 10.1016/j.jmmm.2021.168955
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639033198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885321011525</els_id><sourcerecordid>2639033198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA69b8NGkLbmTQGWHAhboOaXo7k9I2Y9IRx6fxWXwyM9S1qwuX73z3chC6piSlhMrbNm37vk8ZYTSlsiiFOEEzWuQ8yXIpT9GMcJIlRSH4OboIoSWE0KyQM7R9ga5JKqsD1NjtRmt0h3tXA27Ae9frzQBxiT0EN-jBAK7g4IYaM_bzvVx9YTtg7UfbWGMjCZ9mq4cNYOP2uy5Wjt52-gA-XKKzRncBrv7mHL09PrwuVsn6efm0uF8nhrNiTASvDcllVuS1gEo3QhPJK6LLvGyMoZJx0HVuQDPCKy6kFEYyaERGY5BlhM_RzdS78-59D2FUrdv7IZ5UTPKScE7LIqbYlDLeheChUTtve-0PihJ1NKpadTSqjkbVZDRCdxME8f8PC14FYyE6qa0HM6ra2f_wXz4hgKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639033198</pqid></control><display><type>article</type><title>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Aoran ; Li, Yuanzhe ; Zhang, Shouheng ; Jin, Zhejun ; Guo, Wenhui ; Xu, Feng ; Wang, Xia ; Cao, Derang ; Xu, Jie ; Zhao, Guoxia ; Zong, Weihua ; Li, Shandong</creator><creatorcontrib>Zhou, Aoran ; Li, Yuanzhe ; Zhang, Shouheng ; Jin, Zhejun ; Guo, Wenhui ; Xu, Feng ; Wang, Xia ; Cao, Derang ; Xu, Jie ; Zhao, Guoxia ; Zong, Weihua ; Li, Shandong</creatorcontrib><description>•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz. The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2021.168955</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antiferromagnetism ; Composition gradient sputtering ; Coupling ; Ferromagnetic resonance ; Ferromagnetism ; Frequency shift ; Integrated circuits ; Interlayer exchange coupling ; Interlayers ; Magnetic anisotropy ; Magnetic devices ; Magnetic films ; Optical mode</subject><ispartof>Journal of magnetism and magnetic materials, 2022-04, Vol.547, p.168955, Article 168955</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</citedby><cites>FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885321011525$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhou, Aoran</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Zhang, Shouheng</creatorcontrib><creatorcontrib>Jin, Zhejun</creatorcontrib><creatorcontrib>Guo, Wenhui</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Cao, Derang</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Zhao, Guoxia</creatorcontrib><creatorcontrib>Zong, Weihua</creatorcontrib><creatorcontrib>Li, Shandong</creatorcontrib><title>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</title><title>Journal of magnetism and magnetic materials</title><description>•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz. The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits.</description><subject>Antiferromagnetism</subject><subject>Composition gradient sputtering</subject><subject>Coupling</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Frequency shift</subject><subject>Integrated circuits</subject><subject>Interlayer exchange coupling</subject><subject>Interlayers</subject><subject>Magnetic anisotropy</subject><subject>Magnetic devices</subject><subject>Magnetic films</subject><subject>Optical mode</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKuA69b8NGkLbmTQGWHAhboOaXo7k9I2Y9IRx6fxWXwyM9S1qwuX73z3chC6piSlhMrbNm37vk8ZYTSlsiiFOEEzWuQ8yXIpT9GMcJIlRSH4OboIoSWE0KyQM7R9ga5JKqsD1NjtRmt0h3tXA27Ae9frzQBxiT0EN-jBAK7g4IYaM_bzvVx9YTtg7UfbWGMjCZ9mq4cNYOP2uy5Wjt52-gA-XKKzRncBrv7mHL09PrwuVsn6efm0uF8nhrNiTASvDcllVuS1gEo3QhPJK6LLvGyMoZJx0HVuQDPCKy6kFEYyaERGY5BlhM_RzdS78-59D2FUrdv7IZ5UTPKScE7LIqbYlDLeheChUTtve-0PihJ1NKpadTSqjkbVZDRCdxME8f8PC14FYyE6qa0HM6ra2f_wXz4hgKg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhou, Aoran</creator><creator>Li, Yuanzhe</creator><creator>Zhang, Shouheng</creator><creator>Jin, Zhejun</creator><creator>Guo, Wenhui</creator><creator>Xu, Feng</creator><creator>Wang, Xia</creator><creator>Cao, Derang</creator><creator>Xu, Jie</creator><creator>Zhao, Guoxia</creator><creator>Zong, Weihua</creator><creator>Li, Shandong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220401</creationdate><title>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</title><author>Zhou, Aoran ; Li, Yuanzhe ; Zhang, Shouheng ; Jin, Zhejun ; Guo, Wenhui ; Xu, Feng ; Wang, Xia ; Cao, Derang ; Xu, Jie ; Zhao, Guoxia ; Zong, Weihua ; Li, Shandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Composition gradient sputtering</topic><topic>Coupling</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Frequency shift</topic><topic>Integrated circuits</topic><topic>Interlayer exchange coupling</topic><topic>Interlayers</topic><topic>Magnetic anisotropy</topic><topic>Magnetic devices</topic><topic>Magnetic films</topic><topic>Optical mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Aoran</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Zhang, Shouheng</creatorcontrib><creatorcontrib>Jin, Zhejun</creatorcontrib><creatorcontrib>Guo, Wenhui</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Cao, Derang</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Zhao, Guoxia</creatorcontrib><creatorcontrib>Zong, Weihua</creatorcontrib><creatorcontrib>Li, Shandong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Aoran</au><au>Li, Yuanzhe</au><au>Zhang, Shouheng</au><au>Jin, Zhejun</au><au>Guo, Wenhui</au><au>Xu, Feng</au><au>Wang, Xia</au><au>Cao, Derang</au><au>Xu, Jie</au><au>Zhao, Guoxia</au><au>Zong, Weihua</au><au>Li, Shandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>547</volume><spage>168955</spage><pages>168955-</pages><artnum>168955</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz. The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2021.168955</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2022-04, Vol.547, p.168955, Article 168955
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2639033198
source Elsevier ScienceDirect Journals
subjects Antiferromagnetism
Composition gradient sputtering
Coupling
Ferromagnetic resonance
Ferromagnetism
Frequency shift
Integrated circuits
Interlayer exchange coupling
Interlayers
Magnetic anisotropy
Magnetic devices
Magnetic films
Optical mode
title Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-biased%20optical%20mode%20ferromagnetic%20resonance%20beyond%2022%C2%A0GHz%20in%20artificial%20exchange%20coupled%20trilayers&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Zhou,%20Aoran&rft.date=2022-04-01&rft.volume=547&rft.spage=168955&rft.pages=168955-&rft.artnum=168955&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2021.168955&rft_dat=%3Cproquest_cross%3E2639033198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639033198&rft_id=info:pmid/&rft_els_id=S0304885321011525&rfr_iscdi=true