Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers
•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz. The ferr...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2022-04, Vol.547, p.168955, Article 168955 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 168955 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 547 |
creator | Zhou, Aoran Li, Yuanzhe Zhang, Shouheng Jin, Zhejun Guo, Wenhui Xu, Feng Wang, Xia Cao, Derang Xu, Jie Zhao, Guoxia Zong, Weihua Li, Shandong |
description | •FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz.
The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits. |
doi_str_mv | 10.1016/j.jmmm.2021.168955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639033198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885321011525</els_id><sourcerecordid>2639033198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA69b8NGkLbmTQGWHAhboOaXo7k9I2Y9IRx6fxWXwyM9S1qwuX73z3chC6piSlhMrbNm37vk8ZYTSlsiiFOEEzWuQ8yXIpT9GMcJIlRSH4OboIoSWE0KyQM7R9ga5JKqsD1NjtRmt0h3tXA27Ae9frzQBxiT0EN-jBAK7g4IYaM_bzvVx9YTtg7UfbWGMjCZ9mq4cNYOP2uy5Wjt52-gA-XKKzRncBrv7mHL09PrwuVsn6efm0uF8nhrNiTASvDcllVuS1gEo3QhPJK6LLvGyMoZJx0HVuQDPCKy6kFEYyaERGY5BlhM_RzdS78-59D2FUrdv7IZ5UTPKScE7LIqbYlDLeheChUTtve-0PihJ1NKpadTSqjkbVZDRCdxME8f8PC14FYyE6qa0HM6ra2f_wXz4hgKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639033198</pqid></control><display><type>article</type><title>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Aoran ; Li, Yuanzhe ; Zhang, Shouheng ; Jin, Zhejun ; Guo, Wenhui ; Xu, Feng ; Wang, Xia ; Cao, Derang ; Xu, Jie ; Zhao, Guoxia ; Zong, Weihua ; Li, Shandong</creator><creatorcontrib>Zhou, Aoran ; Li, Yuanzhe ; Zhang, Shouheng ; Jin, Zhejun ; Guo, Wenhui ; Xu, Feng ; Wang, Xia ; Cao, Derang ; Xu, Jie ; Zhao, Guoxia ; Zong, Weihua ; Li, Shandong</creatorcontrib><description>•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz.
The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2021.168955</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antiferromagnetism ; Composition gradient sputtering ; Coupling ; Ferromagnetic resonance ; Ferromagnetism ; Frequency shift ; Integrated circuits ; Interlayer exchange coupling ; Interlayers ; Magnetic anisotropy ; Magnetic devices ; Magnetic films ; Optical mode</subject><ispartof>Journal of magnetism and magnetic materials, 2022-04, Vol.547, p.168955, Article 168955</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</citedby><cites>FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885321011525$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhou, Aoran</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Zhang, Shouheng</creatorcontrib><creatorcontrib>Jin, Zhejun</creatorcontrib><creatorcontrib>Guo, Wenhui</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Cao, Derang</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Zhao, Guoxia</creatorcontrib><creatorcontrib>Zong, Weihua</creatorcontrib><creatorcontrib>Li, Shandong</creatorcontrib><title>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</title><title>Journal of magnetism and magnetic materials</title><description>•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz.
The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits.</description><subject>Antiferromagnetism</subject><subject>Composition gradient sputtering</subject><subject>Coupling</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Frequency shift</subject><subject>Integrated circuits</subject><subject>Interlayer exchange coupling</subject><subject>Interlayers</subject><subject>Magnetic anisotropy</subject><subject>Magnetic devices</subject><subject>Magnetic films</subject><subject>Optical mode</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKuA69b8NGkLbmTQGWHAhboOaXo7k9I2Y9IRx6fxWXwyM9S1qwuX73z3chC6piSlhMrbNm37vk8ZYTSlsiiFOEEzWuQ8yXIpT9GMcJIlRSH4OboIoSWE0KyQM7R9ga5JKqsD1NjtRmt0h3tXA27Ae9frzQBxiT0EN-jBAK7g4IYaM_bzvVx9YTtg7UfbWGMjCZ9mq4cNYOP2uy5Wjt52-gA-XKKzRncBrv7mHL09PrwuVsn6efm0uF8nhrNiTASvDcllVuS1gEo3QhPJK6LLvGyMoZJx0HVuQDPCKy6kFEYyaERGY5BlhM_RzdS78-59D2FUrdv7IZ5UTPKScE7LIqbYlDLeheChUTtve-0PihJ1NKpadTSqjkbVZDRCdxME8f8PC14FYyE6qa0HM6ra2f_wXz4hgKg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhou, Aoran</creator><creator>Li, Yuanzhe</creator><creator>Zhang, Shouheng</creator><creator>Jin, Zhejun</creator><creator>Guo, Wenhui</creator><creator>Xu, Feng</creator><creator>Wang, Xia</creator><creator>Cao, Derang</creator><creator>Xu, Jie</creator><creator>Zhao, Guoxia</creator><creator>Zong, Weihua</creator><creator>Li, Shandong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220401</creationdate><title>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</title><author>Zhou, Aoran ; Li, Yuanzhe ; Zhang, Shouheng ; Jin, Zhejun ; Guo, Wenhui ; Xu, Feng ; Wang, Xia ; Cao, Derang ; Xu, Jie ; Zhao, Guoxia ; Zong, Weihua ; Li, Shandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-53dc076487d5ebaf5a063b0a979fcc1623ead7cea203b35665c62ef541a062403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Composition gradient sputtering</topic><topic>Coupling</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Frequency shift</topic><topic>Integrated circuits</topic><topic>Interlayer exchange coupling</topic><topic>Interlayers</topic><topic>Magnetic anisotropy</topic><topic>Magnetic devices</topic><topic>Magnetic films</topic><topic>Optical mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Aoran</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Zhang, Shouheng</creatorcontrib><creatorcontrib>Jin, Zhejun</creatorcontrib><creatorcontrib>Guo, Wenhui</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Cao, Derang</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Zhao, Guoxia</creatorcontrib><creatorcontrib>Zong, Weihua</creatorcontrib><creatorcontrib>Li, Shandong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Aoran</au><au>Li, Yuanzhe</au><au>Zhang, Shouheng</au><au>Jin, Zhejun</au><au>Guo, Wenhui</au><au>Xu, Feng</au><au>Wang, Xia</au><au>Cao, Derang</au><au>Xu, Jie</au><au>Zhao, Guoxia</au><au>Zong, Weihua</au><au>Li, Shandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>547</volume><spage>168955</spage><pages>168955-</pages><artnum>168955</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•FeCoB/Ru/FeCoB trilayers prepared by a CGS show strong AFM coupling.•A very strong exchange coupling field as high as 2235 Oe was obtained.•A record optical mode resonance frequency up to 22.68 GHz was achieved.•Resonance mode changing at a low field results in a large fr jump over 16 GHz.
The ferromagnetic resonance frequency (fr) determines the maximum operating frequency of magnetic devices, nevertheless, it is very difficult to increase the fr(H=0) above 10 GHz by simply increasing the magnetic anisotropy field HK. In this study, a series of FeCoB/Ru/FeCoB sandwich trilayers with strong antiferromagnetic coupling were prepared by a compositional gradient sputtering method. As a result, the fr(0) increases from 13.69 to 22.68 GHz with the increase of B content, which can be attributed to the strong interlayer exchange coupling. In addition, a dramatic frequency shift over 16 GHz along easy-axis direction can be achieved simply via transition of magnetic configuration using a small magnetic field of the order of 100 Oe. This study provides an effective fabrication method to prepare self-biased soft magnetic films with ultrahigh resonance frequency for today’s microwave integrated circuits.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2021.168955</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2022-04, Vol.547, p.168955, Article 168955 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2639033198 |
source | Elsevier ScienceDirect Journals |
subjects | Antiferromagnetism Composition gradient sputtering Coupling Ferromagnetic resonance Ferromagnetism Frequency shift Integrated circuits Interlayer exchange coupling Interlayers Magnetic anisotropy Magnetic devices Magnetic films Optical mode |
title | Self-biased optical mode ferromagnetic resonance beyond 22 GHz in artificial exchange coupled trilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-biased%20optical%20mode%20ferromagnetic%20resonance%20beyond%2022%C2%A0GHz%20in%20artificial%20exchange%20coupled%20trilayers&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Zhou,%20Aoran&rft.date=2022-04-01&rft.volume=547&rft.spage=168955&rft.pages=168955-&rft.artnum=168955&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2021.168955&rft_dat=%3Cproquest_cross%3E2639033198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639033198&rft_id=info:pmid/&rft_els_id=S0304885321011525&rfr_iscdi=true |