A model-independent tool for evolutionary constrained multi-objective optimization under uncertainty

An open-source tool has been developed to facilitate constrained single- and multi-objective optimization under uncertainty (CMOU) analyses. The tool uses the well-known PEST interface protocols to communicate with the underlying forward simulation, making it non-intrusive. The tool contains a built...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2022-03, Vol.149, p.105316, Article 105316
Hauptverfasser: White, Jeremy T., Knowling, Matthew J., Fienen, Michael N., Siade, Adam, Rea, Otis, Martinez, Guillermo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An open-source tool has been developed to facilitate constrained single- and multi-objective optimization under uncertainty (CMOU) analyses. The tool uses the well-known PEST interface protocols to communicate with the underlying forward simulation, making it non-intrusive. The tool contains a built-in parallel run manager to make use of heterogeneous and distributed computing resources. Several popular and well-known evolutionary algorithms are implemented and can be combined with a range of approaches to represent uncertainty in model-derived constraint/objective values. These attributes serve to address the current barrier to adopt advanced CMOU analyses for a wide range of decision-support problems across the environmental modeling spectrum. We demonstrate the capabilities of the CMOU tool on a well-known analytical benchmark problem that we augmented to include uncertainty, as well as on a synthetic density-dependent coastal groundwater management benchmark problem. Both demonstrations highlight the importance of explicitly accounting for uncertainty to convey risk and reliability in pareto-optimal design.
ISSN:1364-8152
1873-6726
DOI:10.1016/j.envsoft.2022.105316