H-Cycles in H-Colored Multigraphs
Let H be a graph possibly with loops and G a multigraph without loops. G is said to be H -colored if there exists a function c : E ( G ) → V ( H ). A cycle ( v 0 , e 0 , v 1 , e 1 , … , e k - 1 , v k = v 0 ) in G , where e i = v i v i + 1 for every i in {0, … , k - 1 }, is an H -cycle if and only if...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2022-06, Vol.38 (3), Article 62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Graphs and combinatorics |
container_volume | 38 |
creator | Galeana-Sánchez, Hortensia Rojas-Monroy, Rocío Sánchez-López, Rocío Villarreal-Valdés, Juana Imelda |
description | Let
H
be a graph possibly with loops and
G
a multigraph without loops.
G
is said to be
H
-colored if there exists a function
c
:
E
(
G
)
→
V
(
H
). A cycle (
v
0
,
e
0
,
v
1
,
e
1
,
…
,
e
k
-
1
,
v
k
=
v
0
) in
G
, where
e
i
=
v
i
v
i
+
1
for every
i
in {0,
…
,
k
-
1
}, is an
H
-cycle if and only if (
c
(
e
0
),
a
0
,
c
(
e
1
),
…
,
c
(
e
k
-
2
),
a
k
-
2
,
c
(
e
k
-
1
),
a
k
-
1
,
c
(
e
0
)) is a walk in
H
, with
a
i
=
c
(
e
i
)
c
(
e
i
+
1
) for every
i
in {0,
…
,
k
-
1
} (indices modulo
k
). If
H
is a complete graph without loops, an
H
-walk is called properly colored walk. The problem of check whether an edge-colored graph
G
contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if
H
is a graph without loops and
G
is an
H
-colored multigraph such that (1)
H
and
G
have no isolated vertices, (2)
G
has no
H
-cycles and (3) for every
x
in
V
(
G
),
G
x
is a complete
k
x
-partite graph for some
k
x
in
N
. Then there exists a vertex
z
in
V
(
G
) such that every connected component
D
of
G
-
z
satisfies that {
e
∈
E
(
G
) :
e
=
z
u
for some
u
in
V
(
D
)} is an independent set in
G
z
(where for
w
in
V
(
G
),
G
w
is an associated graph to the vertex
w
, respect to the
H
-coloring of
G
). |
doi_str_mv | 10.1007/s00373-022-02464-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639021806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639021806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqHwAkxFzIY7n-PUI4qgRSpigdmyXbe0Ckmw06Fvj0uQ2BhOd8P__Sd9jF0j3CFAdZ8AqCIOQuSRSnJ5wgqUVPJSozxlBWhEDoj6nF2ktAOAEiUU7GbB64NvQppu22m-u6aLYTV92TfDdhNt_5Eu2dnaNilc_e4Je396fKsXfPk6f64fltwT6oELVVGJq1KiE8LPvLNIFioCgUI70iCcQ5JkSUrtvLZSKVvZqkQ_UxgcTdjt2NvH7msf0mB23T62-aUR6sjjDFROiTHlY5dSDGvTx-2njQeDYI4qzKjCZBXmR4WRGaIRSjncbkL8q_6H-gYGmV1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639021806</pqid></control><display><type>article</type><title>H-Cycles in H-Colored Multigraphs</title><source>Springer Nature - Complete Springer Journals</source><creator>Galeana-Sánchez, Hortensia ; Rojas-Monroy, Rocío ; Sánchez-López, Rocío ; Villarreal-Valdés, Juana Imelda</creator><creatorcontrib>Galeana-Sánchez, Hortensia ; Rojas-Monroy, Rocío ; Sánchez-López, Rocío ; Villarreal-Valdés, Juana Imelda</creatorcontrib><description>Let
H
be a graph possibly with loops and
G
a multigraph without loops.
G
is said to be
H
-colored if there exists a function
c
:
E
(
G
)
→
V
(
H
). A cycle (
v
0
,
e
0
,
v
1
,
e
1
,
…
,
e
k
-
1
,
v
k
=
v
0
) in
G
, where
e
i
=
v
i
v
i
+
1
for every
i
in {0,
…
,
k
-
1
}, is an
H
-cycle if and only if (
c
(
e
0
),
a
0
,
c
(
e
1
),
…
,
c
(
e
k
-
2
),
a
k
-
2
,
c
(
e
k
-
1
),
a
k
-
1
,
c
(
e
0
)) is a walk in
H
, with
a
i
=
c
(
e
i
)
c
(
e
i
+
1
) for every
i
in {0,
…
,
k
-
1
} (indices modulo
k
). If
H
is a complete graph without loops, an
H
-walk is called properly colored walk. The problem of check whether an edge-colored graph
G
contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if
H
is a graph without loops and
G
is an
H
-colored multigraph such that (1)
H
and
G
have no isolated vertices, (2)
G
has no
H
-cycles and (3) for every
x
in
V
(
G
),
G
x
is a complete
k
x
-partite graph for some
k
x
in
N
. Then there exists a vertex
z
in
V
(
G
) such that every connected component
D
of
G
-
z
satisfies that {
e
∈
E
(
G
) :
e
=
z
u
for some
u
in
V
(
D
)} is an independent set in
G
z
(where for
w
in
V
(
G
),
G
w
is an associated graph to the vertex
w
, respect to the
H
-coloring of
G
).</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-022-02464-4</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Apexes ; Combinatorics ; Engineering Design ; Graph coloring ; Graph theory ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2022-06, Vol.38 (3), Article 62</ispartof><rights>The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</citedby><cites>FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</cites><orcidid>0000-0001-9869-8379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-022-02464-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-022-02464-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Galeana-Sánchez, Hortensia</creatorcontrib><creatorcontrib>Rojas-Monroy, Rocío</creatorcontrib><creatorcontrib>Sánchez-López, Rocío</creatorcontrib><creatorcontrib>Villarreal-Valdés, Juana Imelda</creatorcontrib><title>H-Cycles in H-Colored Multigraphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Let
H
be a graph possibly with loops and
G
a multigraph without loops.
G
is said to be
H
-colored if there exists a function
c
:
E
(
G
)
→
V
(
H
). A cycle (
v
0
,
e
0
,
v
1
,
e
1
,
…
,
e
k
-
1
,
v
k
=
v
0
) in
G
, where
e
i
=
v
i
v
i
+
1
for every
i
in {0,
…
,
k
-
1
}, is an
H
-cycle if and only if (
c
(
e
0
),
a
0
,
c
(
e
1
),
…
,
c
(
e
k
-
2
),
a
k
-
2
,
c
(
e
k
-
1
),
a
k
-
1
,
c
(
e
0
)) is a walk in
H
, with
a
i
=
c
(
e
i
)
c
(
e
i
+
1
) for every
i
in {0,
…
,
k
-
1
} (indices modulo
k
). If
H
is a complete graph without loops, an
H
-walk is called properly colored walk. The problem of check whether an edge-colored graph
G
contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if
H
is a graph without loops and
G
is an
H
-colored multigraph such that (1)
H
and
G
have no isolated vertices, (2)
G
has no
H
-cycles and (3) for every
x
in
V
(
G
),
G
x
is a complete
k
x
-partite graph for some
k
x
in
N
. Then there exists a vertex
z
in
V
(
G
) such that every connected component
D
of
G
-
z
satisfies that {
e
∈
E
(
G
) :
e
=
z
u
for some
u
in
V
(
D
)} is an independent set in
G
z
(where for
w
in
V
(
G
),
G
w
is an associated graph to the vertex
w
, respect to the
H
-coloring of
G
).</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqHwAkxFzIY7n-PUI4qgRSpigdmyXbe0Ckmw06Fvj0uQ2BhOd8P__Sd9jF0j3CFAdZ8AqCIOQuSRSnJ5wgqUVPJSozxlBWhEDoj6nF2ktAOAEiUU7GbB64NvQppu22m-u6aLYTV92TfDdhNt_5Eu2dnaNilc_e4Je396fKsXfPk6f64fltwT6oELVVGJq1KiE8LPvLNIFioCgUI70iCcQ5JkSUrtvLZSKVvZqkQ_UxgcTdjt2NvH7msf0mB23T62-aUR6sjjDFROiTHlY5dSDGvTx-2njQeDYI4qzKjCZBXmR4WRGaIRSjncbkL8q_6H-gYGmV1U</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Galeana-Sánchez, Hortensia</creator><creator>Rojas-Monroy, Rocío</creator><creator>Sánchez-López, Rocío</creator><creator>Villarreal-Valdés, Juana Imelda</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9869-8379</orcidid></search><sort><creationdate>20220601</creationdate><title>H-Cycles in H-Colored Multigraphs</title><author>Galeana-Sánchez, Hortensia ; Rojas-Monroy, Rocío ; Sánchez-López, Rocío ; Villarreal-Valdés, Juana Imelda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galeana-Sánchez, Hortensia</creatorcontrib><creatorcontrib>Rojas-Monroy, Rocío</creatorcontrib><creatorcontrib>Sánchez-López, Rocío</creatorcontrib><creatorcontrib>Villarreal-Valdés, Juana Imelda</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galeana-Sánchez, Hortensia</au><au>Rojas-Monroy, Rocío</au><au>Sánchez-López, Rocío</au><au>Villarreal-Valdés, Juana Imelda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H-Cycles in H-Colored Multigraphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><artnum>62</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Let
H
be a graph possibly with loops and
G
a multigraph without loops.
G
is said to be
H
-colored if there exists a function
c
:
E
(
G
)
→
V
(
H
). A cycle (
v
0
,
e
0
,
v
1
,
e
1
,
…
,
e
k
-
1
,
v
k
=
v
0
) in
G
, where
e
i
=
v
i
v
i
+
1
for every
i
in {0,
…
,
k
-
1
}, is an
H
-cycle if and only if (
c
(
e
0
),
a
0
,
c
(
e
1
),
…
,
c
(
e
k
-
2
),
a
k
-
2
,
c
(
e
k
-
1
),
a
k
-
1
,
c
(
e
0
)) is a walk in
H
, with
a
i
=
c
(
e
i
)
c
(
e
i
+
1
) for every
i
in {0,
…
,
k
-
1
} (indices modulo
k
). If
H
is a complete graph without loops, an
H
-walk is called properly colored walk. The problem of check whether an edge-colored graph
G
contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if
H
is a graph without loops and
G
is an
H
-colored multigraph such that (1)
H
and
G
have no isolated vertices, (2)
G
has no
H
-cycles and (3) for every
x
in
V
(
G
),
G
x
is a complete
k
x
-partite graph for some
k
x
in
N
. Then there exists a vertex
z
in
V
(
G
) such that every connected component
D
of
G
-
z
satisfies that {
e
∈
E
(
G
) :
e
=
z
u
for some
u
in
V
(
D
)} is an independent set in
G
z
(where for
w
in
V
(
G
),
G
w
is an associated graph to the vertex
w
, respect to the
H
-coloring of
G
).</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-022-02464-4</doi><orcidid>https://orcid.org/0000-0001-9869-8379</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2022-06, Vol.38 (3), Article 62 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_2639021806 |
source | Springer Nature - Complete Springer Journals |
subjects | Apexes Combinatorics Engineering Design Graph coloring Graph theory Mathematics Mathematics and Statistics Original Paper |
title | H-Cycles in H-Colored Multigraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H-Cycles%20in%20H-Colored%20Multigraphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Galeana-S%C3%A1nchez,%20Hortensia&rft.date=2022-06-01&rft.volume=38&rft.issue=3&rft.artnum=62&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-022-02464-4&rft_dat=%3Cproquest_cross%3E2639021806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639021806&rft_id=info:pmid/&rfr_iscdi=true |