H-Cycles in H-Colored Multigraphs

Let H be a graph possibly with loops and G a multigraph without loops. G is said to be H -colored if there exists a function c : E ( G ) → V ( H ). A cycle ( v 0 , e 0 , v 1 , e 1 , … , e k - 1 , v k = v 0 ) in G , where e i = v i v i + 1 for every i in {0, … , k - 1 }, is an H -cycle if and only if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2022-06, Vol.38 (3), Article 62
Hauptverfasser: Galeana-Sánchez, Hortensia, Rojas-Monroy, Rocío, Sánchez-López, Rocío, Villarreal-Valdés, Juana Imelda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Graphs and combinatorics
container_volume 38
creator Galeana-Sánchez, Hortensia
Rojas-Monroy, Rocío
Sánchez-López, Rocío
Villarreal-Valdés, Juana Imelda
description Let H be a graph possibly with loops and G a multigraph without loops. G is said to be H -colored if there exists a function c : E ( G ) → V ( H ). A cycle ( v 0 , e 0 , v 1 , e 1 , … , e k - 1 , v k = v 0 ) in G , where e i = v i v i + 1 for every i in {0, … , k - 1 }, is an H -cycle if and only if ( c ( e 0 ), a 0 , c ( e 1 ), … , c ( e k - 2 ), a k - 2 , c ( e k - 1 ), a k - 1 , c ( e 0 )) is a walk in H , with a i = c ( e i ) c ( e i + 1 ) for every i in {0, … , k - 1 } (indices modulo k ). If H is a complete graph without loops, an H -walk is called properly colored walk. The problem of check whether an edge-colored graph G contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if H is a graph without loops and G is an H -colored multigraph such that (1) H and G have no isolated vertices, (2) G has no H -cycles and (3) for every x in V ( G ), G x is a complete k x -partite graph for some k x in N . Then there exists a vertex z in V ( G ) such that every connected component D of G - z satisfies that { e ∈ E ( G ) : e = z u for some u in V ( D )} is an independent set in G z (where for w in V ( G ), G w is an associated graph to the vertex w , respect to the H -coloring of G ).
doi_str_mv 10.1007/s00373-022-02464-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639021806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639021806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqHwAkxFzIY7n-PUI4qgRSpigdmyXbe0Ckmw06Fvj0uQ2BhOd8P__Sd9jF0j3CFAdZ8AqCIOQuSRSnJ5wgqUVPJSozxlBWhEDoj6nF2ktAOAEiUU7GbB64NvQppu22m-u6aLYTV92TfDdhNt_5Eu2dnaNilc_e4Je396fKsXfPk6f64fltwT6oELVVGJq1KiE8LPvLNIFioCgUI70iCcQ5JkSUrtvLZSKVvZqkQ_UxgcTdjt2NvH7msf0mB23T62-aUR6sjjDFROiTHlY5dSDGvTx-2njQeDYI4qzKjCZBXmR4WRGaIRSjncbkL8q_6H-gYGmV1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639021806</pqid></control><display><type>article</type><title>H-Cycles in H-Colored Multigraphs</title><source>Springer Nature - Complete Springer Journals</source><creator>Galeana-Sánchez, Hortensia ; Rojas-Monroy, Rocío ; Sánchez-López, Rocío ; Villarreal-Valdés, Juana Imelda</creator><creatorcontrib>Galeana-Sánchez, Hortensia ; Rojas-Monroy, Rocío ; Sánchez-López, Rocío ; Villarreal-Valdés, Juana Imelda</creatorcontrib><description>Let H be a graph possibly with loops and G a multigraph without loops. G is said to be H -colored if there exists a function c : E ( G ) → V ( H ). A cycle ( v 0 , e 0 , v 1 , e 1 , … , e k - 1 , v k = v 0 ) in G , where e i = v i v i + 1 for every i in {0, … , k - 1 }, is an H -cycle if and only if ( c ( e 0 ), a 0 , c ( e 1 ), … , c ( e k - 2 ), a k - 2 , c ( e k - 1 ), a k - 1 , c ( e 0 )) is a walk in H , with a i = c ( e i ) c ( e i + 1 ) for every i in {0, … , k - 1 } (indices modulo k ). If H is a complete graph without loops, an H -walk is called properly colored walk. The problem of check whether an edge-colored graph G contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if H is a graph without loops and G is an H -colored multigraph such that (1) H and G have no isolated vertices, (2) G has no H -cycles and (3) for every x in V ( G ), G x is a complete k x -partite graph for some k x in N . Then there exists a vertex z in V ( G ) such that every connected component D of G - z satisfies that { e ∈ E ( G ) : e = z u for some u in V ( D )} is an independent set in G z (where for w in V ( G ), G w is an associated graph to the vertex w , respect to the H -coloring of G ).</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-022-02464-4</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Apexes ; Combinatorics ; Engineering Design ; Graph coloring ; Graph theory ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2022-06, Vol.38 (3), Article 62</ispartof><rights>The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</citedby><cites>FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</cites><orcidid>0000-0001-9869-8379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-022-02464-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-022-02464-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Galeana-Sánchez, Hortensia</creatorcontrib><creatorcontrib>Rojas-Monroy, Rocío</creatorcontrib><creatorcontrib>Sánchez-López, Rocío</creatorcontrib><creatorcontrib>Villarreal-Valdés, Juana Imelda</creatorcontrib><title>H-Cycles in H-Colored Multigraphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Let H be a graph possibly with loops and G a multigraph without loops. G is said to be H -colored if there exists a function c : E ( G ) → V ( H ). A cycle ( v 0 , e 0 , v 1 , e 1 , … , e k - 1 , v k = v 0 ) in G , where e i = v i v i + 1 for every i in {0, … , k - 1 }, is an H -cycle if and only if ( c ( e 0 ), a 0 , c ( e 1 ), … , c ( e k - 2 ), a k - 2 , c ( e k - 1 ), a k - 1 , c ( e 0 )) is a walk in H , with a i = c ( e i ) c ( e i + 1 ) for every i in {0, … , k - 1 } (indices modulo k ). If H is a complete graph without loops, an H -walk is called properly colored walk. The problem of check whether an edge-colored graph G contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if H is a graph without loops and G is an H -colored multigraph such that (1) H and G have no isolated vertices, (2) G has no H -cycles and (3) for every x in V ( G ), G x is a complete k x -partite graph for some k x in N . Then there exists a vertex z in V ( G ) such that every connected component D of G - z satisfies that { e ∈ E ( G ) : e = z u for some u in V ( D )} is an independent set in G z (where for w in V ( G ), G w is an associated graph to the vertex w , respect to the H -coloring of G ).</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqHwAkxFzIY7n-PUI4qgRSpigdmyXbe0Ckmw06Fvj0uQ2BhOd8P__Sd9jF0j3CFAdZ8AqCIOQuSRSnJ5wgqUVPJSozxlBWhEDoj6nF2ktAOAEiUU7GbB64NvQppu22m-u6aLYTV92TfDdhNt_5Eu2dnaNilc_e4Je396fKsXfPk6f64fltwT6oELVVGJq1KiE8LPvLNIFioCgUI70iCcQ5JkSUrtvLZSKVvZqkQ_UxgcTdjt2NvH7msf0mB23T62-aUR6sjjDFROiTHlY5dSDGvTx-2njQeDYI4qzKjCZBXmR4WRGaIRSjncbkL8q_6H-gYGmV1U</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Galeana-Sánchez, Hortensia</creator><creator>Rojas-Monroy, Rocío</creator><creator>Sánchez-López, Rocío</creator><creator>Villarreal-Valdés, Juana Imelda</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9869-8379</orcidid></search><sort><creationdate>20220601</creationdate><title>H-Cycles in H-Colored Multigraphs</title><author>Galeana-Sánchez, Hortensia ; Rojas-Monroy, Rocío ; Sánchez-López, Rocío ; Villarreal-Valdés, Juana Imelda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-267351d541b22c8cba13a07302129b3902bb1343a3449bc9a466a7a751c861eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galeana-Sánchez, Hortensia</creatorcontrib><creatorcontrib>Rojas-Monroy, Rocío</creatorcontrib><creatorcontrib>Sánchez-López, Rocío</creatorcontrib><creatorcontrib>Villarreal-Valdés, Juana Imelda</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galeana-Sánchez, Hortensia</au><au>Rojas-Monroy, Rocío</au><au>Sánchez-López, Rocío</au><au>Villarreal-Valdés, Juana Imelda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H-Cycles in H-Colored Multigraphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><artnum>62</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Let H be a graph possibly with loops and G a multigraph without loops. G is said to be H -colored if there exists a function c : E ( G ) → V ( H ). A cycle ( v 0 , e 0 , v 1 , e 1 , … , e k - 1 , v k = v 0 ) in G , where e i = v i v i + 1 for every i in {0, … , k - 1 }, is an H -cycle if and only if ( c ( e 0 ), a 0 , c ( e 1 ), … , c ( e k - 2 ), a k - 2 , c ( e k - 1 ), a k - 1 , c ( e 0 )) is a walk in H , with a i = c ( e i ) c ( e i + 1 ) for every i in {0, … , k - 1 } (indices modulo k ). If H is a complete graph without loops, an H -walk is called properly colored walk. The problem of check whether an edge-colored graph G contains a properly colored cycle was studied first by Grossman and Häggkvist. Subsequently Yeo gave a sufficient condition which guarantee the existence of a properly colored cycle. In this paper we will extend Yeo’s result for the case where stronger requirements are enforced for a properly colored cycle to be eligible, based on the adjacencies of a graph whose vertices are in bijection with the colors. The main result establishes that if H is a graph without loops and G is an H -colored multigraph such that (1) H and G have no isolated vertices, (2) G has no H -cycles and (3) for every x in V ( G ), G x is a complete k x -partite graph for some k x in N . Then there exists a vertex z in V ( G ) such that every connected component D of G - z satisfies that { e ∈ E ( G ) : e = z u for some u in V ( D )} is an independent set in G z (where for w in V ( G ), G w is an associated graph to the vertex w , respect to the H -coloring of G ).</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-022-02464-4</doi><orcidid>https://orcid.org/0000-0001-9869-8379</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2022-06, Vol.38 (3), Article 62
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_2639021806
source Springer Nature - Complete Springer Journals
subjects Apexes
Combinatorics
Engineering Design
Graph coloring
Graph theory
Mathematics
Mathematics and Statistics
Original Paper
title H-Cycles in H-Colored Multigraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H-Cycles%20in%20H-Colored%20Multigraphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Galeana-S%C3%A1nchez,%20Hortensia&rft.date=2022-06-01&rft.volume=38&rft.issue=3&rft.artnum=62&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-022-02464-4&rft_dat=%3Cproquest_cross%3E2639021806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639021806&rft_id=info:pmid/&rfr_iscdi=true