The McCoy property in Ohm–Rush algebras

An Ohm–Rush algebra R → S is called McCoy if for any zero-divisor f in S , its content c ( f ) has nonzero annihilator in R , because McCoy proved this when S = R [ x ] . We answer a question of Nasehpour by giving a class of examples of faithfully flat Ohm–Rush algebras with the McCoy property that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beiträge zur Algebra und Geometrie 2022-03, Vol.63 (1), p.209-214
1. Verfasser: Epstein, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 1
container_start_page 209
container_title Beiträge zur Algebra und Geometrie
container_volume 63
creator Epstein, Neil
description An Ohm–Rush algebra R → S is called McCoy if for any zero-divisor f in S , its content c ( f ) has nonzero annihilator in R , because McCoy proved this when S = R [ x ] . We answer a question of Nasehpour by giving a class of examples of faithfully flat Ohm–Rush algebras with the McCoy property that are not weak content algebras. However, we show that a faithfully flat Ohm–Rush algebra is a weak content algebra iff R / I → S / I S is McCoy for all radical (resp. prime) ideals I of R . When R is Noetherian (or has the more general fidel (A) property), we show that it is equivalent that R / I → S / I S is McCoy for all ideals.
doi_str_mv 10.1007/s13366-021-00562-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2639021745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639021745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d824efbe66cba1282242d49fc00620b290332e0cf5df803464c2da96994c4e23</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqFwAVaRWLEwjMeOf5ao4k8qqoS6txLHaVq1TbCbRXfcgRtyEgxBYsdqNNL33pt5hFwyuGEA6jYyzqWkgIwCFBKpOiIZMpNWrvkxyYBxTYVGdkrOYlwDgFRKZeR60fr8xU27Q96Hrvdhf8hXu3zebj_fP16H2OblZumrUMZzctKUm-gvfueELB7uF9MnOps_Pk_vZtShgj2tNQrfVF5KV5UMNaLAWpjGpUSECg1wjh5cU9SNBi6kcFiXRhojnPDIJ-RqtE3nvA0-7u26G8IuJVqU3KQPlSgShSPlQhdj8I3tw2pbhoNlYL8bsWMjNvH2pxGrkoiPopjg3dKHP-t_VF9EZmIK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639021745</pqid></control><display><type>article</type><title>The McCoy property in Ohm–Rush algebras</title><source>SpringerNature Journals</source><creator>Epstein, Neil</creator><creatorcontrib>Epstein, Neil</creatorcontrib><description>An Ohm–Rush algebra R → S is called McCoy if for any zero-divisor f in S , its content c ( f ) has nonzero annihilator in R , because McCoy proved this when S = R [ x ] . We answer a question of Nasehpour by giving a class of examples of faithfully flat Ohm–Rush algebras with the McCoy property that are not weak content algebras. However, we show that a faithfully flat Ohm–Rush algebra is a weak content algebra iff R / I → S / I S is McCoy for all radical (resp. prime) ideals I of R . When R is Noetherian (or has the more general fidel (A) property), we show that it is equivalent that R / I → S / I S is McCoy for all ideals.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-021-00562-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Convex and Discrete Geometry ; Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Beiträge zur Algebra und Geometrie, 2022-03, Vol.63 (1), p.209-214</ispartof><rights>The Managing Editors 2021</rights><rights>The Managing Editors 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d824efbe66cba1282242d49fc00620b290332e0cf5df803464c2da96994c4e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-021-00562-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-021-00562-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Epstein, Neil</creatorcontrib><title>The McCoy property in Ohm–Rush algebras</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>An Ohm–Rush algebra R → S is called McCoy if for any zero-divisor f in S , its content c ( f ) has nonzero annihilator in R , because McCoy proved this when S = R [ x ] . We answer a question of Nasehpour by giving a class of examples of faithfully flat Ohm–Rush algebras with the McCoy property that are not weak content algebras. However, we show that a faithfully flat Ohm–Rush algebra is a weak content algebra iff R / I → S / I S is McCoy for all radical (resp. prime) ideals I of R . When R is Noetherian (or has the more general fidel (A) property), we show that it is equivalent that R / I → S / I S is McCoy for all ideals.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqFwAVaRWLEwjMeOf5ao4k8qqoS6txLHaVq1TbCbRXfcgRtyEgxBYsdqNNL33pt5hFwyuGEA6jYyzqWkgIwCFBKpOiIZMpNWrvkxyYBxTYVGdkrOYlwDgFRKZeR60fr8xU27Q96Hrvdhf8hXu3zebj_fP16H2OblZumrUMZzctKUm-gvfueELB7uF9MnOps_Pk_vZtShgj2tNQrfVF5KV5UMNaLAWpjGpUSECg1wjh5cU9SNBi6kcFiXRhojnPDIJ-RqtE3nvA0-7u26G8IuJVqU3KQPlSgShSPlQhdj8I3tw2pbhoNlYL8bsWMjNvH2pxGrkoiPopjg3dKHP-t_VF9EZmIK</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Epstein, Neil</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>The McCoy property in Ohm–Rush algebras</title><author>Epstein, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d824efbe66cba1282242d49fc00620b290332e0cf5df803464c2da96994c4e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epstein, Neil</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epstein, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The McCoy property in Ohm–Rush algebras</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>63</volume><issue>1</issue><spage>209</spage><epage>214</epage><pages>209-214</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>An Ohm–Rush algebra R → S is called McCoy if for any zero-divisor f in S , its content c ( f ) has nonzero annihilator in R , because McCoy proved this when S = R [ x ] . We answer a question of Nasehpour by giving a class of examples of faithfully flat Ohm–Rush algebras with the McCoy property that are not weak content algebras. However, we show that a faithfully flat Ohm–Rush algebra is a weak content algebra iff R / I → S / I S is McCoy for all radical (resp. prime) ideals I of R . When R is Noetherian (or has the more general fidel (A) property), we show that it is equivalent that R / I → S / I S is McCoy for all ideals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-021-00562-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0138-4821
ispartof Beiträge zur Algebra und Geometrie, 2022-03, Vol.63 (1), p.209-214
issn 0138-4821
2191-0383
language eng
recordid cdi_proquest_journals_2639021745
source SpringerNature Journals
subjects Algebra
Algebraic Geometry
Convex and Discrete Geometry
Geometry
Mathematics
Mathematics and Statistics
Original Paper
title The McCoy property in Ohm–Rush algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20McCoy%20property%20in%20Ohm%E2%80%93Rush%20algebras&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Epstein,%20Neil&rft.date=2022-03-01&rft.volume=63&rft.issue=1&rft.spage=209&rft.epage=214&rft.pages=209-214&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-021-00562-7&rft_dat=%3Cproquest_cross%3E2639021745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639021745&rft_id=info:pmid/&rfr_iscdi=true