The McCoy property in Ohm–Rush algebras

An Ohm–Rush algebra R → S is called McCoy if for any zero-divisor f in S , its content c ( f ) has nonzero annihilator in R , because McCoy proved this when S = R [ x ] . We answer a question of Nasehpour by giving a class of examples of faithfully flat Ohm–Rush algebras with the McCoy property that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beiträge zur Algebra und Geometrie 2022-03, Vol.63 (1), p.209-214
1. Verfasser: Epstein, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Ohm–Rush algebra R → S is called McCoy if for any zero-divisor f in S , its content c ( f ) has nonzero annihilator in R , because McCoy proved this when S = R [ x ] . We answer a question of Nasehpour by giving a class of examples of faithfully flat Ohm–Rush algebras with the McCoy property that are not weak content algebras. However, we show that a faithfully flat Ohm–Rush algebra is a weak content algebra iff R / I → S / I S is McCoy for all radical (resp. prime) ideals I of R . When R is Noetherian (or has the more general fidel (A) property), we show that it is equivalent that R / I → S / I S is McCoy for all ideals.
ISSN:0138-4821
2191-0383
DOI:10.1007/s13366-021-00562-7