Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning
This paper presents a learning-based method that uses simulation data to learn an object manipulation task using two model-free reinforcement learning (RL) algorithms. The learning performance is compared across on-policy and off-policy algorithms: Proximal Policy Optimization (PPO) and Soft Actor-C...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2022-03, Vol.46 (3), p.483-498 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 498 |
---|---|
container_issue | 3 |
container_start_page | 483 |
container_title | Autonomous robots |
container_volume | 46 |
creator | Shahid, Asad Ali Piga, Dario Braghin, Francesco Roveda, Loris |
description | This paper presents a learning-based method that uses simulation data to learn an object manipulation task using two model-free reinforcement learning (RL) algorithms. The learning performance is compared across on-policy and off-policy algorithms: Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). In order to accelerate the learning process, the fine-tuning procedure is proposed that demonstrates the continuous adaptation of on-policy RL to new environments, allowing the learned policy to adapt and execute the (partially) modified task. A dense reward function is designed for the task to enable an efficient learning of the agent. A grasping task involving a Franka Emika Panda manipulator is considered as the reference task to be learned. The learned control policy is demonstrated to be generalizable across multiple object geometries and initial robot/parts configurations. The approach is finally tested on a real Franka Emika Panda robot, showing the possibility to transfer the learned behavior from simulation. Experimental results show 100% of successful grasping tasks, making the proposed approach applicable to real applications. |
doi_str_mv | 10.1007/s10514-022-10034-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638858312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638858312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1b691cdd333d852d57fc5870e6c4fed724de56d13509151aa6a20562781cb41d3</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IPKMDLMvu0TR-JU286JlQYNtttlCBPdhfL3WN3jzNTN6PSR6ErincUgB5lygIWhFgjJSbV-RwgmZUSE6kYPIUzaBlLRGi5efoIqUtALQSYIa2i-Bz78cwJmzKGsOAtcl98AkPTkff-zXW3mJt9T7ro4C7EHEMq5B7g3fa9_txmIS8iWFcb3B0vS8m43bO59-aS3TW6SG5q585R--PD2-LZ7J8fXpZ3C-J4TXPhK7qlhprOee2EcwK2RnRSHC1qTpnJausE7WlXEBLBdW61gxEzWRDzaqils_RzdS7j-FjdCmrbRijLy8Vq3nTiIZTVlxscpkYUoquU_vY73T8VBTUkamamKrCVH0zVYcS4lMoFbNfu_hX_U_qC2wbfIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638858312</pqid></control><display><type>article</type><title>Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shahid, Asad Ali ; Piga, Dario ; Braghin, Francesco ; Roveda, Loris</creator><creatorcontrib>Shahid, Asad Ali ; Piga, Dario ; Braghin, Francesco ; Roveda, Loris</creatorcontrib><description>This paper presents a learning-based method that uses simulation data to learn an object manipulation task using two model-free reinforcement learning (RL) algorithms. The learning performance is compared across on-policy and off-policy algorithms: Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). In order to accelerate the learning process, the fine-tuning procedure is proposed that demonstrates the continuous adaptation of on-policy RL to new environments, allowing the learned policy to adapt and execute the (partially) modified task. A dense reward function is designed for the task to enable an efficient learning of the agent. A grasping task involving a Franka Emika Panda manipulator is considered as the reference task to be learned. The learned control policy is demonstrated to be generalizable across multiple object geometries and initial robot/parts configurations. The approach is finally tested on a real Franka Emika Panda robot, showing the possibility to transfer the learned behavior from simulation. Experimental results show 100% of successful grasping tasks, making the proposed approach applicable to real applications.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-022-10034-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Algorithms ; Artificial Intelligence ; Computer Imaging ; Control ; Engineering ; Machine learning ; Mechatronics ; Optimization ; Pattern Recognition and Graphics ; Robotics ; Robotics and Automation ; Robots ; Vision</subject><ispartof>Autonomous robots, 2022-03, Vol.46 (3), p.483-498</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1b691cdd333d852d57fc5870e6c4fed724de56d13509151aa6a20562781cb41d3</citedby><cites>FETCH-LOGICAL-c363t-1b691cdd333d852d57fc5870e6c4fed724de56d13509151aa6a20562781cb41d3</cites><orcidid>0000-0002-4427-536X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-022-10034-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-022-10034-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shahid, Asad Ali</creatorcontrib><creatorcontrib>Piga, Dario</creatorcontrib><creatorcontrib>Braghin, Francesco</creatorcontrib><creatorcontrib>Roveda, Loris</creatorcontrib><title>Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>This paper presents a learning-based method that uses simulation data to learn an object manipulation task using two model-free reinforcement learning (RL) algorithms. The learning performance is compared across on-policy and off-policy algorithms: Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). In order to accelerate the learning process, the fine-tuning procedure is proposed that demonstrates the continuous adaptation of on-policy RL to new environments, allowing the learned policy to adapt and execute the (partially) modified task. A dense reward function is designed for the task to enable an efficient learning of the agent. A grasping task involving a Franka Emika Panda manipulator is considered as the reference task to be learned. The learned control policy is demonstrated to be generalizable across multiple object geometries and initial robot/parts configurations. The approach is finally tested on a real Franka Emika Panda robot, showing the possibility to transfer the learned behavior from simulation. Experimental results show 100% of successful grasping tasks, making the proposed approach applicable to real applications.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Pattern Recognition and Graphics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1PAyEQhonRxFr9A55IPKMDLMvu0TR-JU286JlQYNtttlCBPdhfL3WN3jzNTN6PSR6ErincUgB5lygIWhFgjJSbV-RwgmZUSE6kYPIUzaBlLRGi5efoIqUtALQSYIa2i-Bz78cwJmzKGsOAtcl98AkPTkff-zXW3mJt9T7ro4C7EHEMq5B7g3fa9_txmIS8iWFcb3B0vS8m43bO59-aS3TW6SG5q585R--PD2-LZ7J8fXpZ3C-J4TXPhK7qlhprOee2EcwK2RnRSHC1qTpnJausE7WlXEBLBdW61gxEzWRDzaqils_RzdS7j-FjdCmrbRijLy8Vq3nTiIZTVlxscpkYUoquU_vY73T8VBTUkamamKrCVH0zVYcS4lMoFbNfu_hX_U_qC2wbfIk</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Shahid, Asad Ali</creator><creator>Piga, Dario</creator><creator>Braghin, Francesco</creator><creator>Roveda, Loris</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4427-536X</orcidid></search><sort><creationdate>20220301</creationdate><title>Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning</title><author>Shahid, Asad Ali ; Piga, Dario ; Braghin, Francesco ; Roveda, Loris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1b691cdd333d852d57fc5870e6c4fed724de56d13509151aa6a20562781cb41d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Pattern Recognition and Graphics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahid, Asad Ali</creatorcontrib><creatorcontrib>Piga, Dario</creatorcontrib><creatorcontrib>Braghin, Francesco</creatorcontrib><creatorcontrib>Roveda, Loris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahid, Asad Ali</au><au>Piga, Dario</au><au>Braghin, Francesco</au><au>Roveda, Loris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>46</volume><issue>3</issue><spage>483</spage><epage>498</epage><pages>483-498</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>This paper presents a learning-based method that uses simulation data to learn an object manipulation task using two model-free reinforcement learning (RL) algorithms. The learning performance is compared across on-policy and off-policy algorithms: Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). In order to accelerate the learning process, the fine-tuning procedure is proposed that demonstrates the continuous adaptation of on-policy RL to new environments, allowing the learned policy to adapt and execute the (partially) modified task. A dense reward function is designed for the task to enable an efficient learning of the agent. A grasping task involving a Franka Emika Panda manipulator is considered as the reference task to be learned. The learned control policy is demonstrated to be generalizable across multiple object geometries and initial robot/parts configurations. The approach is finally tested on a real Franka Emika Panda robot, showing the possibility to transfer the learned behavior from simulation. Experimental results show 100% of successful grasping tasks, making the proposed approach applicable to real applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-022-10034-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4427-536X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2022-03, Vol.46 (3), p.483-498 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_journals_2638858312 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptation Algorithms Artificial Intelligence Computer Imaging Control Engineering Machine learning Mechatronics Optimization Pattern Recognition and Graphics Robotics Robotics and Automation Robots Vision |
title | Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20control%20actions%20learning%20and%20adaptation%20for%20robotic%20manipulation%20through%20reinforcement%20learning&rft.jtitle=Autonomous%20robots&rft.au=Shahid,%20Asad%20Ali&rft.date=2022-03-01&rft.volume=46&rft.issue=3&rft.spage=483&rft.epage=498&rft.pages=483-498&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-022-10034-z&rft_dat=%3Cproquest_cross%3E2638858312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638858312&rft_id=info:pmid/&rfr_iscdi=true |