Different wave patterns for (2 + 1) dimensional Maccari’s equation

In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-03, Vol.108 (1), p.445-456
Hauptverfasser: Thilakavathy, J., Amrutha, R., Subramanian, K., Rajan, M. S. Mani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 1
container_start_page 445
container_title Nonlinear dynamics
container_volume 108
creator Thilakavathy, J.
Amrutha, R.
Subramanian, K.
Rajan, M. S. Mani
description In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems.
doi_str_mv 10.1007/s11071-021-07179-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638855052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638855052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgRpHRm2RmMllK_alQcaPQXbiTJjKlnWmTGcVdtz6Cr9cnMTqCOxeHC5dzDoePkGMGFwxAXgbGQLIEeJRkUiXpDhmwTIqE52q6SwageJqAguk-OQhhDgCCQzEg4-vKOett3dI3fLV0hW1rfR2oazw95dvNx3kUO6OzamnrUDU1LugDGoO-2m4-A7XrDtv4PiR7DhfBHv3eIXm-vXkajZPJ49396GqSGMFUm5TOmsKALNMiLkKGgMBnUOZ2JnOHUrgSJFqlWCmMyEuRQqqYQ5XFB7BMDMlJ37vyzbqzodXzpvNxVdA8F0WRZZDx6OK9y_gmBG-dXvlqif5dM9DfxHRPTEdi-oeYTmNI9KEQzfWL9X_V_6S-ABn8b-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638855052</pqid></control><display><type>article</type><title>Different wave patterns for (2 + 1) dimensional Maccari’s equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thilakavathy, J. ; Amrutha, R. ; Subramanian, K. ; Rajan, M. S. Mani</creator><creatorcontrib>Thilakavathy, J. ; Amrutha, R. ; Subramanian, K. ; Rajan, M. S. Mani</creatorcontrib><description>In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07179-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Engineering schools ; Linear equations ; Mathematical analysis ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Partial differential equations ; Physics ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-03, Vol.108 (1), p.445-456</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</citedby><cites>FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</cites><orcidid>0000-0003-0562-2469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-07179-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-07179-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Thilakavathy, J.</creatorcontrib><creatorcontrib>Amrutha, R.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Rajan, M. S. Mani</creatorcontrib><title>Different wave patterns for (2 + 1) dimensional Maccari’s equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering schools</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgRpHRm2RmMllK_alQcaPQXbiTJjKlnWmTGcVdtz6Cr9cnMTqCOxeHC5dzDoePkGMGFwxAXgbGQLIEeJRkUiXpDhmwTIqE52q6SwageJqAguk-OQhhDgCCQzEg4-vKOett3dI3fLV0hW1rfR2oazw95dvNx3kUO6OzamnrUDU1LugDGoO-2m4-A7XrDtv4PiR7DhfBHv3eIXm-vXkajZPJ49396GqSGMFUm5TOmsKALNMiLkKGgMBnUOZ2JnOHUrgSJFqlWCmMyEuRQqqYQ5XFB7BMDMlJ37vyzbqzodXzpvNxVdA8F0WRZZDx6OK9y_gmBG-dXvlqif5dM9DfxHRPTEdi-oeYTmNI9KEQzfWL9X_V_6S-ABn8b-M</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Thilakavathy, J.</creator><creator>Amrutha, R.</creator><creator>Subramanian, K.</creator><creator>Rajan, M. S. Mani</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0562-2469</orcidid></search><sort><creationdate>20220301</creationdate><title>Different wave patterns for (2 + 1) dimensional Maccari’s equation</title><author>Thilakavathy, J. ; Amrutha, R. ; Subramanian, K. ; Rajan, M. S. Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering schools</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thilakavathy, J.</creatorcontrib><creatorcontrib>Amrutha, R.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Rajan, M. S. Mani</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thilakavathy, J.</au><au>Amrutha, R.</au><au>Subramanian, K.</au><au>Rajan, M. S. Mani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different wave patterns for (2 + 1) dimensional Maccari’s equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>108</volume><issue>1</issue><spage>445</spage><epage>456</epage><pages>445-456</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-07179-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0562-2469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-03, Vol.108 (1), p.445-456
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2638855052
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Engineering schools
Linear equations
Mathematical analysis
Mechanical Engineering
Nonlinear dynamics
Original Paper
Partial differential equations
Physics
Vibration
title Different wave patterns for (2 + 1) dimensional Maccari’s equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20wave%20patterns%20for%20(2%E2%80%89+%E2%80%891)%20dimensional%20Maccari%E2%80%99s%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Thilakavathy,%20J.&rft.date=2022-03-01&rft.volume=108&rft.issue=1&rft.spage=445&rft.epage=456&rft.pages=445-456&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07179-4&rft_dat=%3Cproquest_cross%3E2638855052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638855052&rft_id=info:pmid/&rfr_iscdi=true