Different wave patterns for (2 + 1) dimensional Maccari’s equation
In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-ro...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-03, Vol.108 (1), p.445-456 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 1 |
container_start_page | 445 |
container_title | Nonlinear dynamics |
container_volume | 108 |
creator | Thilakavathy, J. Amrutha, R. Subramanian, K. Rajan, M. S. Mani |
description | In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems. |
doi_str_mv | 10.1007/s11071-021-07179-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638855052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638855052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgRpHRm2RmMllK_alQcaPQXbiTJjKlnWmTGcVdtz6Cr9cnMTqCOxeHC5dzDoePkGMGFwxAXgbGQLIEeJRkUiXpDhmwTIqE52q6SwageJqAguk-OQhhDgCCQzEg4-vKOett3dI3fLV0hW1rfR2oazw95dvNx3kUO6OzamnrUDU1LugDGoO-2m4-A7XrDtv4PiR7DhfBHv3eIXm-vXkajZPJ49396GqSGMFUm5TOmsKALNMiLkKGgMBnUOZ2JnOHUrgSJFqlWCmMyEuRQqqYQ5XFB7BMDMlJ37vyzbqzodXzpvNxVdA8F0WRZZDx6OK9y_gmBG-dXvlqif5dM9DfxHRPTEdi-oeYTmNI9KEQzfWL9X_V_6S-ABn8b-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638855052</pqid></control><display><type>article</type><title>Different wave patterns for (2 + 1) dimensional Maccari’s equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thilakavathy, J. ; Amrutha, R. ; Subramanian, K. ; Rajan, M. S. Mani</creator><creatorcontrib>Thilakavathy, J. ; Amrutha, R. ; Subramanian, K. ; Rajan, M. S. Mani</creatorcontrib><description>In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07179-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Engineering schools ; Linear equations ; Mathematical analysis ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Partial differential equations ; Physics ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-03, Vol.108 (1), p.445-456</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</citedby><cites>FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</cites><orcidid>0000-0003-0562-2469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-07179-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-07179-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Thilakavathy, J.</creatorcontrib><creatorcontrib>Amrutha, R.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Rajan, M. S. Mani</creatorcontrib><title>Different wave patterns for (2 + 1) dimensional Maccari’s equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering schools</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgRpHRm2RmMllK_alQcaPQXbiTJjKlnWmTGcVdtz6Cr9cnMTqCOxeHC5dzDoePkGMGFwxAXgbGQLIEeJRkUiXpDhmwTIqE52q6SwageJqAguk-OQhhDgCCQzEg4-vKOett3dI3fLV0hW1rfR2oazw95dvNx3kUO6OzamnrUDU1LugDGoO-2m4-A7XrDtv4PiR7DhfBHv3eIXm-vXkajZPJ49396GqSGMFUm5TOmsKALNMiLkKGgMBnUOZ2JnOHUrgSJFqlWCmMyEuRQqqYQ5XFB7BMDMlJ37vyzbqzodXzpvNxVdA8F0WRZZDx6OK9y_gmBG-dXvlqif5dM9DfxHRPTEdi-oeYTmNI9KEQzfWL9X_V_6S-ABn8b-M</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Thilakavathy, J.</creator><creator>Amrutha, R.</creator><creator>Subramanian, K.</creator><creator>Rajan, M. S. Mani</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0562-2469</orcidid></search><sort><creationdate>20220301</creationdate><title>Different wave patterns for (2 + 1) dimensional Maccari’s equation</title><author>Thilakavathy, J. ; Amrutha, R. ; Subramanian, K. ; Rajan, M. S. Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bfec8c07b48924a1a0a02d0b6ed76fa73fb07ae991b3c36b340491fa951b30153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering schools</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thilakavathy, J.</creatorcontrib><creatorcontrib>Amrutha, R.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Rajan, M. S. Mani</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thilakavathy, J.</au><au>Amrutha, R.</au><au>Subramanian, K.</au><au>Rajan, M. S. Mani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different wave patterns for (2 + 1) dimensional Maccari’s equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>108</volume><issue>1</issue><spage>445</spage><epage>456</epage><pages>445-456</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we are concerned with the (2 + 1) dimensional Maccari’s equation. With the aid of Truncated Painlevé Approach (TPA), the localized solutions have obtained in terms of arbitrary functions. By using the suitable arbitrary functions present in the solution, we have generated the multi-rogue waves, rogue wave doublet and lump solutions. Moreover, through selecting the values of control parameters, dynamical behaviors for the obtained multi-rogue wave, rogue wave doublet and lump solutions are graphically illustrated with the aid of Mathematica tool. The results obtained through this investigation will be beneficial for understanding the dynamics of nonlinear waves in higher dimensional Maccari systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-07179-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0562-2469</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-03, Vol.108 (1), p.445-456 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2638855052 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Engineering schools Linear equations Mathematical analysis Mechanical Engineering Nonlinear dynamics Original Paper Partial differential equations Physics Vibration |
title | Different wave patterns for (2 + 1) dimensional Maccari’s equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20wave%20patterns%20for%20(2%E2%80%89+%E2%80%891)%20dimensional%20Maccari%E2%80%99s%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Thilakavathy,%20J.&rft.date=2022-03-01&rft.volume=108&rft.issue=1&rft.spage=445&rft.epage=456&rft.pages=445-456&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07179-4&rft_dat=%3Cproquest_cross%3E2638855052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638855052&rft_id=info:pmid/&rfr_iscdi=true |