Anisotropic Tomography and Dynamics of the Big Mantle Wedge
We determine high‐resolution 3‐D tomographic images of P‐wave isotropic velocity, radial anisotropy and azimuthal anisotropy beneath NE Asia down to 800 km depth. Our results show negative radial anisotropy (i.e., Vhorizontal
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2022-03, Vol.49 (5), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 49 |
creator | Liang, Xuran Zhao, Dapeng Xu, Yi‐Gang Hua, Yuanyuan |
description | We determine high‐resolution 3‐D tomographic images of P‐wave isotropic velocity, radial anisotropy and azimuthal anisotropy beneath NE Asia down to 800 km depth. Our results show negative radial anisotropy (i.e., Vhorizontal |
doi_str_mv | 10.1029/2021GL097550 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638775187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638775187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3637-18730b0cee862ccc851ad1de3a312514f15a84efff4ff4159d6afb0c33b643e13</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKdv_oCAr1bvTZqkxac5dQoVQSY-lixNto6tqUmH9N_bMR98Eg7c8_BxPziEXCLcILD8lgHDWQG5EgKOyAjzNE0yAHVMRgD50JmSp-QsxjUAcOA4IneTpo6-C76tDZ37rV8G3a56qpuKPvSN3tYmUu9ot7L0vl7SV910G0s_bbW05-TE6U20F793TD6eHufT56R4m71MJ0WiueQqwUxxWICxNpPMGJMJ1BVWlmuOTGDqUOgstc65dAiKvJLaDTznC5lyi3xMrg5_2-C_djZ25drvQjMoSyZ5ppTYK8bk-kCZ4GMM1pVtqLc69CVCuZ-n_DvPgLMD_l1vbP8vW87ei8EjFf8BDAxkjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638775187</pqid></control><display><type>article</type><title>Anisotropic Tomography and Dynamics of the Big Mantle Wedge</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Liang, Xuran ; Zhao, Dapeng ; Xu, Yi‐Gang ; Hua, Yuanyuan</creator><creatorcontrib>Liang, Xuran ; Zhao, Dapeng ; Xu, Yi‐Gang ; Hua, Yuanyuan</creatorcontrib><description>We determine high‐resolution 3‐D tomographic images of P‐wave isotropic velocity, radial anisotropy and azimuthal anisotropy beneath NE Asia down to 800 km depth. Our results show negative radial anisotropy (i.e., Vhorizontal < Vvertical) in the asthenosphere of the big mantle wedge (BMW), which may reflect mineral alignment caused by vertical flow in the asthenosphere. Across the Tanlu fault zone (TLF), the western and eastern parts of the BMW exhibit high and low P‐wave velocities, respectively. Combining our tomographic results with surface geological features, we speculate that convection in the BMW includes upwelling asthenosphere beneath the Japan Sea and the Korean Peninsula and downwelling asthenosphere beneath the Songliao and North China basins. The downwelling asthenosphere beneath the two basins is associated with diminishing volcanism and anomalous tectonic subsidence since ∼110 Ma. The great TLF is an important boundary for the BMW structure and dynamics.
Plain Language Summary
The subducting Pacific plate becomes flat in the lower part of the mantle transition zone beneath NE Asia, and a big mantle wedge (BMW) has formed above the flat slab. The BMW controls tectonic and geological activities in NE Asia, which are characterized by large‐scale sedimentary basins, lithospheric thinning, large strike‐slip faults, deep earthquakes and intraplate volcanism. However, the convection pattern in the BMW is still unclear. We determine the first 3‐D P‐wave radial anisotropy model down to 800 km depth beneath NE Asia, as well as high‐resolution tomographic images of isotropic P‐wave velocity and azimuthal anisotropy. We find predominant negative radial anisotropy in the BMW and east‐west variations of velocity structure. Combining the tomographic results with surface geological features, we speculate that convection in the BMW may include upwelling flows beneath the SW Japan Sea and the southern Korean Peninsula and downwelling flows beneath the Songliao and North China basins.
Key Points
The first 3‐D radial anisotropy model beneath NE Asia is obtained
East‐west structural variations in the big mantle wedge (BMW) are revealed
A possible convection pattern in the BMW is proposed</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2021GL097550</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Anisotropy ; Asthenosphere ; Automobile industry ; big mantle wedge ; Convection ; Convection patterns ; Downwelling ; Dynamics ; Earthquakes ; Fault zones ; Faults ; Geological faults ; Geology ; Lava ; Ocean circulation ; Plates ; Resolution ; Sedimentary basins ; Seismic activity ; seismic anisotropy ; Subduction (geology) ; Tectonics ; Tomography ; Transition zone ; Upwelling ; Velocity ; Vertical flow ; Vertical mixing ; Volcanic activity ; Volcanism ; Wave velocity</subject><ispartof>Geophysical research letters, 2022-03, Vol.49 (5), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3637-18730b0cee862ccc851ad1de3a312514f15a84efff4ff4159d6afb0c33b643e13</citedby><cites>FETCH-LOGICAL-a3637-18730b0cee862ccc851ad1de3a312514f15a84efff4ff4159d6afb0c33b643e13</cites><orcidid>0000-0002-7589-8359 ; 0000-0002-2644-0325 ; 0000-0002-4407-594X ; 0000-0002-9531-7208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021GL097550$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021GL097550$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Liang, Xuran</creatorcontrib><creatorcontrib>Zhao, Dapeng</creatorcontrib><creatorcontrib>Xu, Yi‐Gang</creatorcontrib><creatorcontrib>Hua, Yuanyuan</creatorcontrib><title>Anisotropic Tomography and Dynamics of the Big Mantle Wedge</title><title>Geophysical research letters</title><description>We determine high‐resolution 3‐D tomographic images of P‐wave isotropic velocity, radial anisotropy and azimuthal anisotropy beneath NE Asia down to 800 km depth. Our results show negative radial anisotropy (i.e., Vhorizontal < Vvertical) in the asthenosphere of the big mantle wedge (BMW), which may reflect mineral alignment caused by vertical flow in the asthenosphere. Across the Tanlu fault zone (TLF), the western and eastern parts of the BMW exhibit high and low P‐wave velocities, respectively. Combining our tomographic results with surface geological features, we speculate that convection in the BMW includes upwelling asthenosphere beneath the Japan Sea and the Korean Peninsula and downwelling asthenosphere beneath the Songliao and North China basins. The downwelling asthenosphere beneath the two basins is associated with diminishing volcanism and anomalous tectonic subsidence since ∼110 Ma. The great TLF is an important boundary for the BMW structure and dynamics.
Plain Language Summary
The subducting Pacific plate becomes flat in the lower part of the mantle transition zone beneath NE Asia, and a big mantle wedge (BMW) has formed above the flat slab. The BMW controls tectonic and geological activities in NE Asia, which are characterized by large‐scale sedimentary basins, lithospheric thinning, large strike‐slip faults, deep earthquakes and intraplate volcanism. However, the convection pattern in the BMW is still unclear. We determine the first 3‐D P‐wave radial anisotropy model down to 800 km depth beneath NE Asia, as well as high‐resolution tomographic images of isotropic P‐wave velocity and azimuthal anisotropy. We find predominant negative radial anisotropy in the BMW and east‐west variations of velocity structure. Combining the tomographic results with surface geological features, we speculate that convection in the BMW may include upwelling flows beneath the SW Japan Sea and the southern Korean Peninsula and downwelling flows beneath the Songliao and North China basins.
Key Points
The first 3‐D radial anisotropy model beneath NE Asia is obtained
East‐west structural variations in the big mantle wedge (BMW) are revealed
A possible convection pattern in the BMW is proposed</description><subject>Anisotropy</subject><subject>Asthenosphere</subject><subject>Automobile industry</subject><subject>big mantle wedge</subject><subject>Convection</subject><subject>Convection patterns</subject><subject>Downwelling</subject><subject>Dynamics</subject><subject>Earthquakes</subject><subject>Fault zones</subject><subject>Faults</subject><subject>Geological faults</subject><subject>Geology</subject><subject>Lava</subject><subject>Ocean circulation</subject><subject>Plates</subject><subject>Resolution</subject><subject>Sedimentary basins</subject><subject>Seismic activity</subject><subject>seismic anisotropy</subject><subject>Subduction (geology)</subject><subject>Tectonics</subject><subject>Tomography</subject><subject>Transition zone</subject><subject>Upwelling</subject><subject>Velocity</subject><subject>Vertical flow</subject><subject>Vertical mixing</subject><subject>Volcanic activity</subject><subject>Volcanism</subject><subject>Wave velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kFFLwzAUhYMoOKdv_oCAr1bvTZqkxac5dQoVQSY-lixNto6tqUmH9N_bMR98Eg7c8_BxPziEXCLcILD8lgHDWQG5EgKOyAjzNE0yAHVMRgD50JmSp-QsxjUAcOA4IneTpo6-C76tDZ37rV8G3a56qpuKPvSN3tYmUu9ot7L0vl7SV910G0s_bbW05-TE6U20F793TD6eHufT56R4m71MJ0WiueQqwUxxWICxNpPMGJMJ1BVWlmuOTGDqUOgstc65dAiKvJLaDTznC5lyi3xMrg5_2-C_djZ25drvQjMoSyZ5ppTYK8bk-kCZ4GMM1pVtqLc69CVCuZ-n_DvPgLMD_l1vbP8vW87ei8EjFf8BDAxkjA</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Liang, Xuran</creator><creator>Zhao, Dapeng</creator><creator>Xu, Yi‐Gang</creator><creator>Hua, Yuanyuan</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7589-8359</orcidid><orcidid>https://orcid.org/0000-0002-2644-0325</orcidid><orcidid>https://orcid.org/0000-0002-4407-594X</orcidid><orcidid>https://orcid.org/0000-0002-9531-7208</orcidid></search><sort><creationdate>20220316</creationdate><title>Anisotropic Tomography and Dynamics of the Big Mantle Wedge</title><author>Liang, Xuran ; Zhao, Dapeng ; Xu, Yi‐Gang ; Hua, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3637-18730b0cee862ccc851ad1de3a312514f15a84efff4ff4159d6afb0c33b643e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Asthenosphere</topic><topic>Automobile industry</topic><topic>big mantle wedge</topic><topic>Convection</topic><topic>Convection patterns</topic><topic>Downwelling</topic><topic>Dynamics</topic><topic>Earthquakes</topic><topic>Fault zones</topic><topic>Faults</topic><topic>Geological faults</topic><topic>Geology</topic><topic>Lava</topic><topic>Ocean circulation</topic><topic>Plates</topic><topic>Resolution</topic><topic>Sedimentary basins</topic><topic>Seismic activity</topic><topic>seismic anisotropy</topic><topic>Subduction (geology)</topic><topic>Tectonics</topic><topic>Tomography</topic><topic>Transition zone</topic><topic>Upwelling</topic><topic>Velocity</topic><topic>Vertical flow</topic><topic>Vertical mixing</topic><topic>Volcanic activity</topic><topic>Volcanism</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xuran</creatorcontrib><creatorcontrib>Zhao, Dapeng</creatorcontrib><creatorcontrib>Xu, Yi‐Gang</creatorcontrib><creatorcontrib>Hua, Yuanyuan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xuran</au><au>Zhao, Dapeng</au><au>Xu, Yi‐Gang</au><au>Hua, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Tomography and Dynamics of the Big Mantle Wedge</atitle><jtitle>Geophysical research letters</jtitle><date>2022-03-16</date><risdate>2022</risdate><volume>49</volume><issue>5</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We determine high‐resolution 3‐D tomographic images of P‐wave isotropic velocity, radial anisotropy and azimuthal anisotropy beneath NE Asia down to 800 km depth. Our results show negative radial anisotropy (i.e., Vhorizontal < Vvertical) in the asthenosphere of the big mantle wedge (BMW), which may reflect mineral alignment caused by vertical flow in the asthenosphere. Across the Tanlu fault zone (TLF), the western and eastern parts of the BMW exhibit high and low P‐wave velocities, respectively. Combining our tomographic results with surface geological features, we speculate that convection in the BMW includes upwelling asthenosphere beneath the Japan Sea and the Korean Peninsula and downwelling asthenosphere beneath the Songliao and North China basins. The downwelling asthenosphere beneath the two basins is associated with diminishing volcanism and anomalous tectonic subsidence since ∼110 Ma. The great TLF is an important boundary for the BMW structure and dynamics.
Plain Language Summary
The subducting Pacific plate becomes flat in the lower part of the mantle transition zone beneath NE Asia, and a big mantle wedge (BMW) has formed above the flat slab. The BMW controls tectonic and geological activities in NE Asia, which are characterized by large‐scale sedimentary basins, lithospheric thinning, large strike‐slip faults, deep earthquakes and intraplate volcanism. However, the convection pattern in the BMW is still unclear. We determine the first 3‐D P‐wave radial anisotropy model down to 800 km depth beneath NE Asia, as well as high‐resolution tomographic images of isotropic P‐wave velocity and azimuthal anisotropy. We find predominant negative radial anisotropy in the BMW and east‐west variations of velocity structure. Combining the tomographic results with surface geological features, we speculate that convection in the BMW may include upwelling flows beneath the SW Japan Sea and the southern Korean Peninsula and downwelling flows beneath the Songliao and North China basins.
Key Points
The first 3‐D radial anisotropy model beneath NE Asia is obtained
East‐west structural variations in the big mantle wedge (BMW) are revealed
A possible convection pattern in the BMW is proposed</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2021GL097550</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7589-8359</orcidid><orcidid>https://orcid.org/0000-0002-2644-0325</orcidid><orcidid>https://orcid.org/0000-0002-4407-594X</orcidid><orcidid>https://orcid.org/0000-0002-9531-7208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2022-03, Vol.49 (5), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2638775187 |
source | Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | Anisotropy Asthenosphere Automobile industry big mantle wedge Convection Convection patterns Downwelling Dynamics Earthquakes Fault zones Faults Geological faults Geology Lava Ocean circulation Plates Resolution Sedimentary basins Seismic activity seismic anisotropy Subduction (geology) Tectonics Tomography Transition zone Upwelling Velocity Vertical flow Vertical mixing Volcanic activity Volcanism Wave velocity |
title | Anisotropic Tomography and Dynamics of the Big Mantle Wedge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Tomography%20and%20Dynamics%20of%20the%20Big%20Mantle%20Wedge&rft.jtitle=Geophysical%20research%20letters&rft.au=Liang,%20Xuran&rft.date=2022-03-16&rft.volume=49&rft.issue=5&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2021GL097550&rft_dat=%3Cproquest_cross%3E2638775187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638775187&rft_id=info:pmid/&rfr_iscdi=true |