Parameter identification and sensitivity analysis of lithium-ion battery via whale optimization algorithm

The reaction mechanism of lithium-ion batteries is directly affect system safety and performance. Understanding the actual battery status through model simulation has become an important issue in battery management systems. This research proposes a non-destructive parameter identification method tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2022-02, Vol.404, p.139574, Article 139574
Hauptverfasser: Pan, Ting-Chen, Liu, En-Jui, Ku, Hung-Chih, Hong, Che-Wun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 139574
container_title Electrochimica acta
container_volume 404
creator Pan, Ting-Chen
Liu, En-Jui
Ku, Hung-Chih
Hong, Che-Wun
description The reaction mechanism of lithium-ion batteries is directly affect system safety and performance. Understanding the actual battery status through model simulation has become an important issue in battery management systems. This research proposes a non-destructive parameter identification method that uses whale optimization algorithm with unique global searching to identify the parameters of the electrochemical model and analyze the sensitivity of important parameters in the battery model. First, we establish an experimental platform and conduct four conditions, including 1C, 0.5C, 2C and one driving cycle. Moreover, 1C charge and discharge are taken as the benchmark for the parameter identification. After obtaining the key parameters of the battery, the battery performance prediction is carried out for the remaining three types. The terminal voltage of 0.5C, 2C and the road driving prediction errors are less than 15.45 mV, and the battery SOC errors are less than 1.21%. The results of parameter sensitivity studies show that the electrode-related parameters for the migration of lithium ions are the key to calculating the accuracy of the performance, and the porosity of the electrode has the greatest influence. The accurate parameter identification and the sensitivity provide a future methodology to design a proper battery model for battery management systems.
doi_str_mv 10.1016/j.electacta.2021.139574
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638772278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621018582</els_id><sourcerecordid>2638772278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c3213bc581ec5cc871edfa348616f09a0511c8e70350d3dc0cb8bd03dd91059b3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWC-_wQWft0423U32UcQbFPRBn0M2mdUpe6lJWll_vSktvgrDDAPfOcwcxq44zDnw6mY1xw5tNKnmBRR8zkVdysURm3ElRS5UWR-zGQAX-aJS1Sk7C2EFALKSMGP0arzpMaLPyOEQqSVrIo1DZgaXBRwCRdpSnNJuuilQyMY26yh-0qbPd1xjYlJP2ZZM9v1pOszGdaSefg423cfoE95fsJPWdAEvD_OcvT_cv9095cuXx-e722VuxULE1AsuGlsqjra0VkmOrjVioSpetVAbKDm3CiWIEpxwFmyjGgfCuZpDWTfinF3vfdd-_NpgiHo1bnw6PuiiEkrKopAqUXJPWT-G4LHVa0-98ZPmoHe56pX-y1XvctX7XJPydq_E9MSW0OtgCQeLjnzitRvpX49fmyCH4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638772278</pqid></control><display><type>article</type><title>Parameter identification and sensitivity analysis of lithium-ion battery via whale optimization algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Ting-Chen ; Liu, En-Jui ; Ku, Hung-Chih ; Hong, Che-Wun</creator><creatorcontrib>Pan, Ting-Chen ; Liu, En-Jui ; Ku, Hung-Chih ; Hong, Che-Wun</creatorcontrib><description>The reaction mechanism of lithium-ion batteries is directly affect system safety and performance. Understanding the actual battery status through model simulation has become an important issue in battery management systems. This research proposes a non-destructive parameter identification method that uses whale optimization algorithm with unique global searching to identify the parameters of the electrochemical model and analyze the sensitivity of important parameters in the battery model. First, we establish an experimental platform and conduct four conditions, including 1C, 0.5C, 2C and one driving cycle. Moreover, 1C charge and discharge are taken as the benchmark for the parameter identification. After obtaining the key parameters of the battery, the battery performance prediction is carried out for the remaining three types. The terminal voltage of 0.5C, 2C and the road driving prediction errors are less than 15.45 mV, and the battery SOC errors are less than 1.21%. The results of parameter sensitivity studies show that the electrode-related parameters for the migration of lithium ions are the key to calculating the accuracy of the performance, and the porosity of the electrode has the greatest influence. The accurate parameter identification and the sensitivity provide a future methodology to design a proper battery model for battery management systems.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.139574</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Errors ; Identification methods ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Management systems ; Mathematical models ; Nondestructive testing ; Optimization ; Optimization algorithms ; Parameter identification ; Parameter sensitivity ; Performance prediction ; Power management ; Product safety ; Reaction mechanisms ; Rechargeable batteries ; Sensitivity analysis ; Whale optimization algorithm</subject><ispartof>Electrochimica acta, 2022-02, Vol.404, p.139574, Article 139574</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-c3213bc581ec5cc871edfa348616f09a0511c8e70350d3dc0cb8bd03dd91059b3</citedby><cites>FETCH-LOGICAL-c343t-c3213bc581ec5cc871edfa348616f09a0511c8e70350d3dc0cb8bd03dd91059b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468621018582$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pan, Ting-Chen</creatorcontrib><creatorcontrib>Liu, En-Jui</creatorcontrib><creatorcontrib>Ku, Hung-Chih</creatorcontrib><creatorcontrib>Hong, Che-Wun</creatorcontrib><title>Parameter identification and sensitivity analysis of lithium-ion battery via whale optimization algorithm</title><title>Electrochimica acta</title><description>The reaction mechanism of lithium-ion batteries is directly affect system safety and performance. Understanding the actual battery status through model simulation has become an important issue in battery management systems. This research proposes a non-destructive parameter identification method that uses whale optimization algorithm with unique global searching to identify the parameters of the electrochemical model and analyze the sensitivity of important parameters in the battery model. First, we establish an experimental platform and conduct four conditions, including 1C, 0.5C, 2C and one driving cycle. Moreover, 1C charge and discharge are taken as the benchmark for the parameter identification. After obtaining the key parameters of the battery, the battery performance prediction is carried out for the remaining three types. The terminal voltage of 0.5C, 2C and the road driving prediction errors are less than 15.45 mV, and the battery SOC errors are less than 1.21%. The results of parameter sensitivity studies show that the electrode-related parameters for the migration of lithium ions are the key to calculating the accuracy of the performance, and the porosity of the electrode has the greatest influence. The accurate parameter identification and the sensitivity provide a future methodology to design a proper battery model for battery management systems.</description><subject>Algorithms</subject><subject>Errors</subject><subject>Identification methods</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Nondestructive testing</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Performance prediction</subject><subject>Power management</subject><subject>Product safety</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Sensitivity analysis</subject><subject>Whale optimization algorithm</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWC-_wQWft0423U32UcQbFPRBn0M2mdUpe6lJWll_vSktvgrDDAPfOcwcxq44zDnw6mY1xw5tNKnmBRR8zkVdysURm3ElRS5UWR-zGQAX-aJS1Sk7C2EFALKSMGP0arzpMaLPyOEQqSVrIo1DZgaXBRwCRdpSnNJuuilQyMY26yh-0qbPd1xjYlJP2ZZM9v1pOszGdaSefg423cfoE95fsJPWdAEvD_OcvT_cv9095cuXx-e722VuxULE1AsuGlsqjra0VkmOrjVioSpetVAbKDm3CiWIEpxwFmyjGgfCuZpDWTfinF3vfdd-_NpgiHo1bnw6PuiiEkrKopAqUXJPWT-G4LHVa0-98ZPmoHe56pX-y1XvctX7XJPydq_E9MSW0OtgCQeLjnzitRvpX49fmyCH4Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Pan, Ting-Chen</creator><creator>Liu, En-Jui</creator><creator>Ku, Hung-Chih</creator><creator>Hong, Che-Wun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220201</creationdate><title>Parameter identification and sensitivity analysis of lithium-ion battery via whale optimization algorithm</title><author>Pan, Ting-Chen ; Liu, En-Jui ; Ku, Hung-Chih ; Hong, Che-Wun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c3213bc581ec5cc871edfa348616f09a0511c8e70350d3dc0cb8bd03dd91059b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Errors</topic><topic>Identification methods</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Nondestructive testing</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Performance prediction</topic><topic>Power management</topic><topic>Product safety</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Sensitivity analysis</topic><topic>Whale optimization algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Ting-Chen</creatorcontrib><creatorcontrib>Liu, En-Jui</creatorcontrib><creatorcontrib>Ku, Hung-Chih</creatorcontrib><creatorcontrib>Hong, Che-Wun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Ting-Chen</au><au>Liu, En-Jui</au><au>Ku, Hung-Chih</au><au>Hong, Che-Wun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter identification and sensitivity analysis of lithium-ion battery via whale optimization algorithm</atitle><jtitle>Electrochimica acta</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>404</volume><spage>139574</spage><pages>139574-</pages><artnum>139574</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>The reaction mechanism of lithium-ion batteries is directly affect system safety and performance. Understanding the actual battery status through model simulation has become an important issue in battery management systems. This research proposes a non-destructive parameter identification method that uses whale optimization algorithm with unique global searching to identify the parameters of the electrochemical model and analyze the sensitivity of important parameters in the battery model. First, we establish an experimental platform and conduct four conditions, including 1C, 0.5C, 2C and one driving cycle. Moreover, 1C charge and discharge are taken as the benchmark for the parameter identification. After obtaining the key parameters of the battery, the battery performance prediction is carried out for the remaining three types. The terminal voltage of 0.5C, 2C and the road driving prediction errors are less than 15.45 mV, and the battery SOC errors are less than 1.21%. The results of parameter sensitivity studies show that the electrode-related parameters for the migration of lithium ions are the key to calculating the accuracy of the performance, and the porosity of the electrode has the greatest influence. The accurate parameter identification and the sensitivity provide a future methodology to design a proper battery model for battery management systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.139574</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2022-02, Vol.404, p.139574, Article 139574
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2638772278
source Elsevier ScienceDirect Journals
subjects Algorithms
Errors
Identification methods
Lithium
Lithium-ion batteries
Lithium-ion battery
Management systems
Mathematical models
Nondestructive testing
Optimization
Optimization algorithms
Parameter identification
Parameter sensitivity
Performance prediction
Power management
Product safety
Reaction mechanisms
Rechargeable batteries
Sensitivity analysis
Whale optimization algorithm
title Parameter identification and sensitivity analysis of lithium-ion battery via whale optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20identification%20and%20sensitivity%20analysis%20of%20lithium-ion%20battery%20via%20whale%20optimization%20algorithm&rft.jtitle=Electrochimica%20acta&rft.au=Pan,%20Ting-Chen&rft.date=2022-02-01&rft.volume=404&rft.spage=139574&rft.pages=139574-&rft.artnum=139574&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.139574&rft_dat=%3Cproquest_cross%3E2638772278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638772278&rft_id=info:pmid/&rft_els_id=S0013468621018582&rfr_iscdi=true