Enhanced thermal performance with high-amplitude intermittent impingement cooling

•Remarkable enhancement in cooling efficiency was confirmed by experimental and numerical data for high-amplitude intermittent impingement cooling.•The generation and interaction of vortex rings break the development of thermal boundary layer and enhance local turbulence of the wall jet region.•High...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2022-04, Vol.185, p.122359, Article 122359
Hauptverfasser: Zhang, Zhihan, Li, Qianhui, Bruecker, Christoph, Zhang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122359
container_title International journal of heat and mass transfer
container_volume 185
creator Zhang, Zhihan
Li, Qianhui
Bruecker, Christoph
Zhang, Qiang
description •Remarkable enhancement in cooling efficiency was confirmed by experimental and numerical data for high-amplitude intermittent impingement cooling.•The generation and interaction of vortex rings break the development of thermal boundary layer and enhance local turbulence of the wall jet region.•High amplitude intermittent impingement cooling technique potentially can save coolant consumption with solid materials with low thermal diffusivity.•There is an ample design space to optimize the time control of the unsteady conjugate heat transfer process. The advances of many future engineering applications rely on effective cooling techniques. Beyond the traditional thermal management solutions, the design potential of unsteady impingement cooling is still under-explored. As a combined experimental and numerical study, this paper reports new findings on high-amplitude intermittent impingement cooling with controlled unsteady patterns. Specifical attention was paid on the intermittent flow close time ratio. The experimental work involved unsteady cooling performance measurement with a small-scale water tunnel system. Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) was conducted to illustrate the unsteady flow physics, and to evaluate the cooling performance at a wider range of flow conditions (average Reynolds number 2800 < Rem
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.122359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638769040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021014587</els_id><sourcerecordid>2638769040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d8670b74397ad88e15dc8965bcb8c01b87d5c2054aff367960d43b6483ae24b63</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI7-h4IbNx3zah47ZfDJgAi6DmmaTlP6Msko_ntT6s6Nq3vuvYdzuR8AVwhuEETsut24trE69jqE6PUQaus3GGK0QRiTQh6BFRJc5hgJeQxWECKeS4LgKTgLoZ1bSNkKvN4NjR6MrbLYWN_rLpusr8ek0jD7crHJGrdvct1PnYuHymZuiMnoYrRDzFw_uWFv-1mbcexScw5Oat0Fe_Fb1-D9_u5t-5jvXh6etre73FAsYl4JxmHJKZFcV0JYVFRGSFaUphQGolLwqjAYFlTXNWFcMlhRUjIqiLaYloysweWSO_nx42BDVO148EM6qTAjgjMJKUyum8Vl_BiCt7WavOu1_1YIqhmkatVfkGoGqRaQKeJ5ibDpm0-XtsE4OzNz3pqoqtH9P-wH-eaJ4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638769040</pqid></control><display><type>article</type><title>Enhanced thermal performance with high-amplitude intermittent impingement cooling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Zhihan ; Li, Qianhui ; Bruecker, Christoph ; Zhang, Qiang</creator><creatorcontrib>Zhang, Zhihan ; Li, Qianhui ; Bruecker, Christoph ; Zhang, Qiang</creatorcontrib><description><![CDATA[•Remarkable enhancement in cooling efficiency was confirmed by experimental and numerical data for high-amplitude intermittent impingement cooling.•The generation and interaction of vortex rings break the development of thermal boundary layer and enhance local turbulence of the wall jet region.•High amplitude intermittent impingement cooling technique potentially can save coolant consumption with solid materials with low thermal diffusivity.•There is an ample design space to optimize the time control of the unsteady conjugate heat transfer process. The advances of many future engineering applications rely on effective cooling techniques. Beyond the traditional thermal management solutions, the design potential of unsteady impingement cooling is still under-explored. As a combined experimental and numerical study, this paper reports new findings on high-amplitude intermittent impingement cooling with controlled unsteady patterns. Specifical attention was paid on the intermittent flow close time ratio. The experimental work involved unsteady cooling performance measurement with a small-scale water tunnel system. Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) was conducted to illustrate the unsteady flow physics, and to evaluate the cooling performance at a wider range of flow conditions (average Reynolds number 2800 < Rem < 10,000, pulsating frequency 0.1 Hz < f < 2 Hz, close time ratio 0.2 < γ < 0.8). Both experimental and numerical data confirm a remarkable improvement of overall cooling efficiency by high-amplitude intermittent impingement flow. Especially around the wall jet region, the enhancement can reach as high as 50%. The generation and interaction of vortex rings break the development of thermal boundary layer, and enhance the generation of near wall turbulence, especially for the wall jet region. Saving in coolant consumption with high-amplitude intermittent impingement cooling technique in practice is also demonstrated. The novel concept presented in this paper can be applied to a wide range of applications including electronic cooling, deicing, gas turbine blade cooling, etc.]]></description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.122359</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Amplitudes ; Conjugate heat transfer ; Cooling ; Deicing ; Flow control ; Fluid dynamics ; Fluid flow ; Gas turbine engines ; Impingement ; Impingement cooling ; Intermittent ; Performance evaluation ; Performance measurement ; Reynolds averaged Navier-Stokes method ; Reynolds number ; Thermal boundary layer ; Thermal management ; Turbine blades ; Unsteady flow ; Vortex rings ; Wall jets</subject><ispartof>International journal of heat and mass transfer, 2022-04, Vol.185, p.122359, Article 122359</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d8670b74397ad88e15dc8965bcb8c01b87d5c2054aff367960d43b6483ae24b63</citedby><cites>FETCH-LOGICAL-c428t-d8670b74397ad88e15dc8965bcb8c01b87d5c2054aff367960d43b6483ae24b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122359$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Zhang, Zhihan</creatorcontrib><creatorcontrib>Li, Qianhui</creatorcontrib><creatorcontrib>Bruecker, Christoph</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>Enhanced thermal performance with high-amplitude intermittent impingement cooling</title><title>International journal of heat and mass transfer</title><description><![CDATA[•Remarkable enhancement in cooling efficiency was confirmed by experimental and numerical data for high-amplitude intermittent impingement cooling.•The generation and interaction of vortex rings break the development of thermal boundary layer and enhance local turbulence of the wall jet region.•High amplitude intermittent impingement cooling technique potentially can save coolant consumption with solid materials with low thermal diffusivity.•There is an ample design space to optimize the time control of the unsteady conjugate heat transfer process. The advances of many future engineering applications rely on effective cooling techniques. Beyond the traditional thermal management solutions, the design potential of unsteady impingement cooling is still under-explored. As a combined experimental and numerical study, this paper reports new findings on high-amplitude intermittent impingement cooling with controlled unsteady patterns. Specifical attention was paid on the intermittent flow close time ratio. The experimental work involved unsteady cooling performance measurement with a small-scale water tunnel system. Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) was conducted to illustrate the unsteady flow physics, and to evaluate the cooling performance at a wider range of flow conditions (average Reynolds number 2800 < Rem < 10,000, pulsating frequency 0.1 Hz < f < 2 Hz, close time ratio 0.2 < γ < 0.8). Both experimental and numerical data confirm a remarkable improvement of overall cooling efficiency by high-amplitude intermittent impingement flow. Especially around the wall jet region, the enhancement can reach as high as 50%. The generation and interaction of vortex rings break the development of thermal boundary layer, and enhance the generation of near wall turbulence, especially for the wall jet region. Saving in coolant consumption with high-amplitude intermittent impingement cooling technique in practice is also demonstrated. The novel concept presented in this paper can be applied to a wide range of applications including electronic cooling, deicing, gas turbine blade cooling, etc.]]></description><subject>Amplitudes</subject><subject>Conjugate heat transfer</subject><subject>Cooling</subject><subject>Deicing</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gas turbine engines</subject><subject>Impingement</subject><subject>Impingement cooling</subject><subject>Intermittent</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Reynolds number</subject><subject>Thermal boundary layer</subject><subject>Thermal management</subject><subject>Turbine blades</subject><subject>Unsteady flow</subject><subject>Vortex rings</subject><subject>Wall jets</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOI7-h4IbNx3zah47ZfDJgAi6DmmaTlP6Msko_ntT6s6Nq3vuvYdzuR8AVwhuEETsut24trE69jqE6PUQaus3GGK0QRiTQh6BFRJc5hgJeQxWECKeS4LgKTgLoZ1bSNkKvN4NjR6MrbLYWN_rLpusr8ek0jD7crHJGrdvct1PnYuHymZuiMnoYrRDzFw_uWFv-1mbcexScw5Oat0Fe_Fb1-D9_u5t-5jvXh6etre73FAsYl4JxmHJKZFcV0JYVFRGSFaUphQGolLwqjAYFlTXNWFcMlhRUjIqiLaYloysweWSO_nx42BDVO148EM6qTAjgjMJKUyum8Vl_BiCt7WavOu1_1YIqhmkatVfkGoGqRaQKeJ5ibDpm0-XtsE4OzNz3pqoqtH9P-wH-eaJ4g</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Zhang, Zhihan</creator><creator>Li, Qianhui</creator><creator>Bruecker, Christoph</creator><creator>Zhang, Qiang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202204</creationdate><title>Enhanced thermal performance with high-amplitude intermittent impingement cooling</title><author>Zhang, Zhihan ; Li, Qianhui ; Bruecker, Christoph ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d8670b74397ad88e15dc8965bcb8c01b87d5c2054aff367960d43b6483ae24b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplitudes</topic><topic>Conjugate heat transfer</topic><topic>Cooling</topic><topic>Deicing</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gas turbine engines</topic><topic>Impingement</topic><topic>Impingement cooling</topic><topic>Intermittent</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Reynolds number</topic><topic>Thermal boundary layer</topic><topic>Thermal management</topic><topic>Turbine blades</topic><topic>Unsteady flow</topic><topic>Vortex rings</topic><topic>Wall jets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhihan</creatorcontrib><creatorcontrib>Li, Qianhui</creatorcontrib><creatorcontrib>Bruecker, Christoph</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhihan</au><au>Li, Qianhui</au><au>Bruecker, Christoph</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermal performance with high-amplitude intermittent impingement cooling</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-04</date><risdate>2022</risdate><volume>185</volume><spage>122359</spage><pages>122359-</pages><artnum>122359</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract><![CDATA[•Remarkable enhancement in cooling efficiency was confirmed by experimental and numerical data for high-amplitude intermittent impingement cooling.•The generation and interaction of vortex rings break the development of thermal boundary layer and enhance local turbulence of the wall jet region.•High amplitude intermittent impingement cooling technique potentially can save coolant consumption with solid materials with low thermal diffusivity.•There is an ample design space to optimize the time control of the unsteady conjugate heat transfer process. The advances of many future engineering applications rely on effective cooling techniques. Beyond the traditional thermal management solutions, the design potential of unsteady impingement cooling is still under-explored. As a combined experimental and numerical study, this paper reports new findings on high-amplitude intermittent impingement cooling with controlled unsteady patterns. Specifical attention was paid on the intermittent flow close time ratio. The experimental work involved unsteady cooling performance measurement with a small-scale water tunnel system. Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) was conducted to illustrate the unsteady flow physics, and to evaluate the cooling performance at a wider range of flow conditions (average Reynolds number 2800 < Rem < 10,000, pulsating frequency 0.1 Hz < f < 2 Hz, close time ratio 0.2 < γ < 0.8). Both experimental and numerical data confirm a remarkable improvement of overall cooling efficiency by high-amplitude intermittent impingement flow. Especially around the wall jet region, the enhancement can reach as high as 50%. The generation and interaction of vortex rings break the development of thermal boundary layer, and enhance the generation of near wall turbulence, especially for the wall jet region. Saving in coolant consumption with high-amplitude intermittent impingement cooling technique in practice is also demonstrated. The novel concept presented in this paper can be applied to a wide range of applications including electronic cooling, deicing, gas turbine blade cooling, etc.]]></abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.122359</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2022-04, Vol.185, p.122359, Article 122359
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2638769040
source ScienceDirect Journals (5 years ago - present)
subjects Amplitudes
Conjugate heat transfer
Cooling
Deicing
Flow control
Fluid dynamics
Fluid flow
Gas turbine engines
Impingement
Impingement cooling
Intermittent
Performance evaluation
Performance measurement
Reynolds averaged Navier-Stokes method
Reynolds number
Thermal boundary layer
Thermal management
Turbine blades
Unsteady flow
Vortex rings
Wall jets
title Enhanced thermal performance with high-amplitude intermittent impingement cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermal%20performance%20with%20high-amplitude%20intermittent%20impingement%20cooling&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Zhang,%20Zhihan&rft.date=2022-04&rft.volume=185&rft.spage=122359&rft.pages=122359-&rft.artnum=122359&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.122359&rft_dat=%3Cproquest_cross%3E2638769040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638769040&rft_id=info:pmid/&rft_els_id=S0017931021014587&rfr_iscdi=true