Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing
Engineering the fate of supramolecular assemblies by heat treatment (i. e., using thermal preparative pathways) remains challenging and a largely ad hoc process. The rational design of such trajectories requires precise manipulation of the strength of molecularly encrypted interactions along an asse...
Gespeichert in:
Veröffentlicht in: | ChemSystemsChem 2022-03, Vol.4 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | ChemSystemsChem |
container_volume | 4 |
creator | Khodaverdi, Masoumeh Hossain, Md Shahadat Zhang, Zhe Martino, Robert P. Nehls, Connor W. Mozhdehi, Davoud |
description | Engineering the fate of supramolecular assemblies by heat treatment (i. e., using thermal preparative pathways) remains challenging and a largely ad hoc process. The rational design of such trajectories requires precise manipulation of the strength of molecularly encrypted interactions along an assembly path defined by changes in free energy as a function of temperature. Here, we use temperature‐triggered liquid–liquid phase separation of proteins to program the nano‐ and mesoscale assembly of a genetically encoded amphiphile – a post‐translationally lipidated protein – along user‐defined thermal trajectories. This molecularly defined pathway was used to funnel thermal energy into the system to direct building blocks to a previously inaccessible region of the energy landscape, and to synthesize two‐dimensional nanomaterials with sophisticated structures, such as braids and toroids. Because proteins’ phase boundaries and transition are programmable at the sequence‐level, our strategy opens new horizons to expand the structural hierarchy and functional landscape of protein‐based materials.
Low‐fat high‐protein recipes for nanosynthesis: Temperature‐triggered liquid–liquid phase separation of a lipidated protein is leveraged to direct amphiphilic building blocks across the supramolecular energy landscape. This pathway‐dependent thermal processing is used to synthesize two‐dimensional nanomaterials with complex morphologies, such as toroids. |
doi_str_mv | 10.1002/syst.202100037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638696952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638696952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-57c9f5e5e7a87da62e33874f66d59f54b041840ad0ddbf7d38a7fc3be9011acf3</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBUnv1vOA5dT-SbHIspVahYKH14ClsdmfblCRbd1NKbv4Ef6O_xC0V9SYMzDzmvTfMQ-iWkjElhN373ndjRlgAhIsLNGCJIFHMSHr5Z75GI-93gcISymkuBsgsZbc9yv7z_WMFNaiusi021uGlsxsnm0aWNeCJ99CUdY-twXNooauUrAOctcpq0HjS7LdVqBo8Lnu83oJrZH3yUOB91W5u0JWRtYfRdx-il4fZevoYLZ7nT9PJIlKcChElQuUmgQSEzISWKQPOMxGbNNVJWMQliWkWE6mJ1qURmmdSGMVLyAmlUhk-RHdn372zbwfwXbGzB9eGkwVLeZbmaZ6wwBqfWcpZ7x2YYu-qRrq-oKQ4xVmc4ix-4gyC_Cw4hhf7f9jF6nW1_tV-AbwlfCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638696952</pqid></control><display><type>article</type><title>Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing</title><source>Wiley Online Library All Journals</source><creator>Khodaverdi, Masoumeh ; Hossain, Md Shahadat ; Zhang, Zhe ; Martino, Robert P. ; Nehls, Connor W. ; Mozhdehi, Davoud</creator><creatorcontrib>Khodaverdi, Masoumeh ; Hossain, Md Shahadat ; Zhang, Zhe ; Martino, Robert P. ; Nehls, Connor W. ; Mozhdehi, Davoud</creatorcontrib><description>Engineering the fate of supramolecular assemblies by heat treatment (i. e., using thermal preparative pathways) remains challenging and a largely ad hoc process. The rational design of such trajectories requires precise manipulation of the strength of molecularly encrypted interactions along an assembly path defined by changes in free energy as a function of temperature. Here, we use temperature‐triggered liquid–liquid phase separation of proteins to program the nano‐ and mesoscale assembly of a genetically encoded amphiphile – a post‐translationally lipidated protein – along user‐defined thermal trajectories. This molecularly defined pathway was used to funnel thermal energy into the system to direct building blocks to a previously inaccessible region of the energy landscape, and to synthesize two‐dimensional nanomaterials with sophisticated structures, such as braids and toroids. Because proteins’ phase boundaries and transition are programmable at the sequence‐level, our strategy opens new horizons to expand the structural hierarchy and functional landscape of protein‐based materials.
Low‐fat high‐protein recipes for nanosynthesis: Temperature‐triggered liquid–liquid phase separation of a lipidated protein is leveraged to direct amphiphilic building blocks across the supramolecular energy landscape. This pathway‐dependent thermal processing is used to synthesize two‐dimensional nanomaterials with complex morphologies, such as toroids.</description><identifier>ISSN: 2570-4206</identifier><identifier>EISSN: 2570-4206</identifier><identifier>DOI: 10.1002/syst.202100037</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Genetic engineering ; Lipoproteins ; Nanotechnology ; Phase transitions ; Protein modifications ; Supramolecular chemistry</subject><ispartof>ChemSystemsChem, 2022-03, Vol.4 (2), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-57c9f5e5e7a87da62e33874f66d59f54b041840ad0ddbf7d38a7fc3be9011acf3</citedby><cites>FETCH-LOGICAL-c3177-57c9f5e5e7a87da62e33874f66d59f54b041840ad0ddbf7d38a7fc3be9011acf3</cites><orcidid>0000-0002-3440-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsyst.202100037$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsyst.202100037$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Khodaverdi, Masoumeh</creatorcontrib><creatorcontrib>Hossain, Md Shahadat</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Martino, Robert P.</creatorcontrib><creatorcontrib>Nehls, Connor W.</creatorcontrib><creatorcontrib>Mozhdehi, Davoud</creatorcontrib><title>Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing</title><title>ChemSystemsChem</title><description>Engineering the fate of supramolecular assemblies by heat treatment (i. e., using thermal preparative pathways) remains challenging and a largely ad hoc process. The rational design of such trajectories requires precise manipulation of the strength of molecularly encrypted interactions along an assembly path defined by changes in free energy as a function of temperature. Here, we use temperature‐triggered liquid–liquid phase separation of proteins to program the nano‐ and mesoscale assembly of a genetically encoded amphiphile – a post‐translationally lipidated protein – along user‐defined thermal trajectories. This molecularly defined pathway was used to funnel thermal energy into the system to direct building blocks to a previously inaccessible region of the energy landscape, and to synthesize two‐dimensional nanomaterials with sophisticated structures, such as braids and toroids. Because proteins’ phase boundaries and transition are programmable at the sequence‐level, our strategy opens new horizons to expand the structural hierarchy and functional landscape of protein‐based materials.
Low‐fat high‐protein recipes for nanosynthesis: Temperature‐triggered liquid–liquid phase separation of a lipidated protein is leveraged to direct amphiphilic building blocks across the supramolecular energy landscape. This pathway‐dependent thermal processing is used to synthesize two‐dimensional nanomaterials with complex morphologies, such as toroids.</description><subject>Genetic engineering</subject><subject>Lipoproteins</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Protein modifications</subject><subject>Supramolecular chemistry</subject><issn>2570-4206</issn><issn>2570-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AQXUTBUnv1vOA5dT-SbHIspVahYKH14ClsdmfblCRbd1NKbv4Ef6O_xC0V9SYMzDzmvTfMQ-iWkjElhN373ndjRlgAhIsLNGCJIFHMSHr5Z75GI-93gcISymkuBsgsZbc9yv7z_WMFNaiusi021uGlsxsnm0aWNeCJ99CUdY-twXNooauUrAOctcpq0HjS7LdVqBo8Lnu83oJrZH3yUOB91W5u0JWRtYfRdx-il4fZevoYLZ7nT9PJIlKcChElQuUmgQSEzISWKQPOMxGbNNVJWMQliWkWE6mJ1qURmmdSGMVLyAmlUhk-RHdn372zbwfwXbGzB9eGkwVLeZbmaZ6wwBqfWcpZ7x2YYu-qRrq-oKQ4xVmc4ix-4gyC_Cw4hhf7f9jF6nW1_tV-AbwlfCM</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Khodaverdi, Masoumeh</creator><creator>Hossain, Md Shahadat</creator><creator>Zhang, Zhe</creator><creator>Martino, Robert P.</creator><creator>Nehls, Connor W.</creator><creator>Mozhdehi, Davoud</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3440-8878</orcidid></search><sort><creationdate>202203</creationdate><title>Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing</title><author>Khodaverdi, Masoumeh ; Hossain, Md Shahadat ; Zhang, Zhe ; Martino, Robert P. ; Nehls, Connor W. ; Mozhdehi, Davoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-57c9f5e5e7a87da62e33874f66d59f54b041840ad0ddbf7d38a7fc3be9011acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Genetic engineering</topic><topic>Lipoproteins</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Protein modifications</topic><topic>Supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodaverdi, Masoumeh</creatorcontrib><creatorcontrib>Hossain, Md Shahadat</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Martino, Robert P.</creatorcontrib><creatorcontrib>Nehls, Connor W.</creatorcontrib><creatorcontrib>Mozhdehi, Davoud</creatorcontrib><collection>CrossRef</collection><jtitle>ChemSystemsChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodaverdi, Masoumeh</au><au>Hossain, Md Shahadat</au><au>Zhang, Zhe</au><au>Martino, Robert P.</au><au>Nehls, Connor W.</au><au>Mozhdehi, Davoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing</atitle><jtitle>ChemSystemsChem</jtitle><date>2022-03</date><risdate>2022</risdate><volume>4</volume><issue>2</issue><epage>n/a</epage><issn>2570-4206</issn><eissn>2570-4206</eissn><abstract>Engineering the fate of supramolecular assemblies by heat treatment (i. e., using thermal preparative pathways) remains challenging and a largely ad hoc process. The rational design of such trajectories requires precise manipulation of the strength of molecularly encrypted interactions along an assembly path defined by changes in free energy as a function of temperature. Here, we use temperature‐triggered liquid–liquid phase separation of proteins to program the nano‐ and mesoscale assembly of a genetically encoded amphiphile – a post‐translationally lipidated protein – along user‐defined thermal trajectories. This molecularly defined pathway was used to funnel thermal energy into the system to direct building blocks to a previously inaccessible region of the energy landscape, and to synthesize two‐dimensional nanomaterials with sophisticated structures, such as braids and toroids. Because proteins’ phase boundaries and transition are programmable at the sequence‐level, our strategy opens new horizons to expand the structural hierarchy and functional landscape of protein‐based materials.
Low‐fat high‐protein recipes for nanosynthesis: Temperature‐triggered liquid–liquid phase separation of a lipidated protein is leveraged to direct amphiphilic building blocks across the supramolecular energy landscape. This pathway‐dependent thermal processing is used to synthesize two‐dimensional nanomaterials with complex morphologies, such as toroids.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/syst.202100037</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3440-8878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2570-4206 |
ispartof | ChemSystemsChem, 2022-03, Vol.4 (2), p.n/a |
issn | 2570-4206 2570-4206 |
language | eng |
recordid | cdi_proquest_journals_2638696952 |
source | Wiley Online Library All Journals |
subjects | Genetic engineering Lipoproteins Nanotechnology Phase transitions Protein modifications Supramolecular chemistry |
title | Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathway%E2%80%90Selection%20for%20Programmable%20Assembly%20of%20Genetically%20Encoded%20Amphiphiles%20by%20Thermal%20Processing&rft.jtitle=ChemSystemsChem&rft.au=Khodaverdi,%20Masoumeh&rft.date=2022-03&rft.volume=4&rft.issue=2&rft.epage=n/a&rft.issn=2570-4206&rft.eissn=2570-4206&rft_id=info:doi/10.1002/syst.202100037&rft_dat=%3Cproquest_cross%3E2638696952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638696952&rft_id=info:pmid/&rfr_iscdi=true |