Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal

In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2022-02, Vol.2022, p.1-10
Hauptverfasser: Chalapathi, M. M. Venkata, Kumar, M. Rudra, Sharma, Neeraj, Shitharth, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2022
creator Chalapathi, M. M. Venkata
Kumar, M. Rudra
Sharma, Neeraj
Shitharth, S.
description In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus.
doi_str_mv 10.1155/2022/8777026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638546907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638546907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXpGnSXo65OWEgOL0u-TjtMtZmJi2yf2_nxEuvzgvn4eXlQeiWkkdKs2zCCGOTXEpJmDhDI1qkRUIoY-d_mfJLdBXjlhBBueQjtJm3ERq9A7wCFVrX1lgf8NLVm-TJNdBG51u1w1Pj-9g5gxeguj5AxJUPeN74bvjjNzC-bt1ProJv8HoPYDZ42lvn8drVQ8U1uqjULsLN7x2jj8X8fbZMVq_PL7PpKjFpKrvESguWa5HaQmmT5SrXlRG51hIMGGYVZ0YZUdkcGMmZ0NZKwjVPq6wqaEHSMbo79e6D_-whduXW92EYEEsm0jzjoiByoB5OlAk-xgBVuQ-uUeFQUlIeXZZHl-WvywG_P-Eb11r15f6nvwHz3nUy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546907</pqid></control><display><type>article</type><title>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Chalapathi, M. M. Venkata ; Kumar, M. Rudra ; Sharma, Neeraj ; Shitharth, S.</creator><contributor>G, Thippa Reddy ; Thippa Reddy G</contributor><creatorcontrib>Chalapathi, M. M. Venkata ; Kumar, M. Rudra ; Sharma, Neeraj ; Shitharth, S. ; G, Thippa Reddy ; Thippa Reddy G</creatorcontrib><description>In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/8777026</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Accuracy ; Acoustics ; Algorithms ; Audio data ; Classification ; Clustering ; Data points ; Decision making ; Distance learning ; Emotion recognition ; Emotions ; Ensemble learning ; Feature recognition ; Identification ; Intelligent systems ; Machine learning ; Neural networks ; Physiology ; Speech ; Speech recognition ; Standard data</subject><ispartof>Security and communication networks, 2022-02, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 M. M. Venkata Chalapathi et al.</rights><rights>Copyright © 2022 M. M. Venkata Chalapathi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</citedby><cites>FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</cites><orcidid>0000-0001-5528-7844 ; 0000-0002-4931-724X ; 0000-0002-8114-5759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>G, Thippa Reddy</contributor><contributor>Thippa Reddy G</contributor><creatorcontrib>Chalapathi, M. M. Venkata</creatorcontrib><creatorcontrib>Kumar, M. Rudra</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Shitharth, S.</creatorcontrib><title>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</title><title>Security and communication networks</title><description>In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Audio data</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data points</subject><subject>Decision making</subject><subject>Distance learning</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Ensemble learning</subject><subject>Feature recognition</subject><subject>Identification</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physiology</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Standard data</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXpGnSXo65OWEgOL0u-TjtMtZmJi2yf2_nxEuvzgvn4eXlQeiWkkdKs2zCCGOTXEpJmDhDI1qkRUIoY-d_mfJLdBXjlhBBueQjtJm3ERq9A7wCFVrX1lgf8NLVm-TJNdBG51u1w1Pj-9g5gxeguj5AxJUPeN74bvjjNzC-bt1ProJv8HoPYDZ42lvn8drVQ8U1uqjULsLN7x2jj8X8fbZMVq_PL7PpKjFpKrvESguWa5HaQmmT5SrXlRG51hIMGGYVZ0YZUdkcGMmZ0NZKwjVPq6wqaEHSMbo79e6D_-whduXW92EYEEsm0jzjoiByoB5OlAk-xgBVuQ-uUeFQUlIeXZZHl-WvywG_P-Eb11r15f6nvwHz3nUy</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Chalapathi, M. M. Venkata</creator><creator>Kumar, M. Rudra</creator><creator>Sharma, Neeraj</creator><creator>Shitharth, S.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5528-7844</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-8114-5759</orcidid></search><sort><creationdate>20220228</creationdate><title>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</title><author>Chalapathi, M. M. Venkata ; Kumar, M. Rudra ; Sharma, Neeraj ; Shitharth, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Audio data</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data points</topic><topic>Decision making</topic><topic>Distance learning</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Ensemble learning</topic><topic>Feature recognition</topic><topic>Identification</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physiology</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Standard data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalapathi, M. M. Venkata</creatorcontrib><creatorcontrib>Kumar, M. Rudra</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Shitharth, S.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalapathi, M. M. Venkata</au><au>Kumar, M. Rudra</au><au>Sharma, Neeraj</au><au>Shitharth, S.</au><au>G, Thippa Reddy</au><au>Thippa Reddy G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</atitle><jtitle>Security and communication networks</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/8777026</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5528-7844</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-8114-5759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2022-02, Vol.2022, p.1-10
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2638546907
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Accuracy
Acoustics
Algorithms
Audio data
Classification
Clustering
Data points
Decision making
Distance learning
Emotion recognition
Emotions
Ensemble learning
Feature recognition
Identification
Intelligent systems
Machine learning
Neural networks
Physiology
Speech
Speech recognition
Standard data
title Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20Learning%20by%20High-Dimensional%20Acoustic%20Features%20for%20Emotion%20Recognition%20from%20Speech%20Audio%20Signal&rft.jtitle=Security%20and%20communication%20networks&rft.au=Chalapathi,%20M.%20M.%20Venkata&rft.date=2022-02-28&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/8777026&rft_dat=%3Cproquest_cross%3E2638546907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638546907&rft_id=info:pmid/&rfr_iscdi=true