Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal
In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models inf...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2022-02, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2022 |
creator | Chalapathi, M. M. Venkata Kumar, M. Rudra Sharma, Neeraj Shitharth, S. |
description | In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus. |
doi_str_mv | 10.1155/2022/8777026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638546907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638546907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXpGnSXo65OWEgOL0u-TjtMtZmJi2yf2_nxEuvzgvn4eXlQeiWkkdKs2zCCGOTXEpJmDhDI1qkRUIoY-d_mfJLdBXjlhBBueQjtJm3ERq9A7wCFVrX1lgf8NLVm-TJNdBG51u1w1Pj-9g5gxeguj5AxJUPeN74bvjjNzC-bt1ProJv8HoPYDZ42lvn8drVQ8U1uqjULsLN7x2jj8X8fbZMVq_PL7PpKjFpKrvESguWa5HaQmmT5SrXlRG51hIMGGYVZ0YZUdkcGMmZ0NZKwjVPq6wqaEHSMbo79e6D_-whduXW92EYEEsm0jzjoiByoB5OlAk-xgBVuQ-uUeFQUlIeXZZHl-WvywG_P-Eb11r15f6nvwHz3nUy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546907</pqid></control><display><type>article</type><title>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Chalapathi, M. M. Venkata ; Kumar, M. Rudra ; Sharma, Neeraj ; Shitharth, S.</creator><contributor>G, Thippa Reddy ; Thippa Reddy G</contributor><creatorcontrib>Chalapathi, M. M. Venkata ; Kumar, M. Rudra ; Sharma, Neeraj ; Shitharth, S. ; G, Thippa Reddy ; Thippa Reddy G</creatorcontrib><description>In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/8777026</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Accuracy ; Acoustics ; Algorithms ; Audio data ; Classification ; Clustering ; Data points ; Decision making ; Distance learning ; Emotion recognition ; Emotions ; Ensemble learning ; Feature recognition ; Identification ; Intelligent systems ; Machine learning ; Neural networks ; Physiology ; Speech ; Speech recognition ; Standard data</subject><ispartof>Security and communication networks, 2022-02, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 M. M. Venkata Chalapathi et al.</rights><rights>Copyright © 2022 M. M. Venkata Chalapathi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</citedby><cites>FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</cites><orcidid>0000-0001-5528-7844 ; 0000-0002-4931-724X ; 0000-0002-8114-5759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>G, Thippa Reddy</contributor><contributor>Thippa Reddy G</contributor><creatorcontrib>Chalapathi, M. M. Venkata</creatorcontrib><creatorcontrib>Kumar, M. Rudra</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Shitharth, S.</creatorcontrib><title>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</title><title>Security and communication networks</title><description>In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Audio data</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data points</subject><subject>Decision making</subject><subject>Distance learning</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Ensemble learning</subject><subject>Feature recognition</subject><subject>Identification</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physiology</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Standard data</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXpGnSXo65OWEgOL0u-TjtMtZmJi2yf2_nxEuvzgvn4eXlQeiWkkdKs2zCCGOTXEpJmDhDI1qkRUIoY-d_mfJLdBXjlhBBueQjtJm3ERq9A7wCFVrX1lgf8NLVm-TJNdBG51u1w1Pj-9g5gxeguj5AxJUPeN74bvjjNzC-bt1ProJv8HoPYDZ42lvn8drVQ8U1uqjULsLN7x2jj8X8fbZMVq_PL7PpKjFpKrvESguWa5HaQmmT5SrXlRG51hIMGGYVZ0YZUdkcGMmZ0NZKwjVPq6wqaEHSMbo79e6D_-whduXW92EYEEsm0jzjoiByoB5OlAk-xgBVuQ-uUeFQUlIeXZZHl-WvywG_P-Eb11r15f6nvwHz3nUy</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Chalapathi, M. M. Venkata</creator><creator>Kumar, M. Rudra</creator><creator>Sharma, Neeraj</creator><creator>Shitharth, S.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5528-7844</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-8114-5759</orcidid></search><sort><creationdate>20220228</creationdate><title>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</title><author>Chalapathi, M. M. Venkata ; Kumar, M. Rudra ; Sharma, Neeraj ; Shitharth, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d7ded4b63d9abc58a8bfc68bb7ecec2da42cac6fd8e20826bdd704b43f5f91903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Audio data</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data points</topic><topic>Decision making</topic><topic>Distance learning</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Ensemble learning</topic><topic>Feature recognition</topic><topic>Identification</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physiology</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Standard data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalapathi, M. M. Venkata</creatorcontrib><creatorcontrib>Kumar, M. Rudra</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Shitharth, S.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalapathi, M. M. Venkata</au><au>Kumar, M. Rudra</au><au>Sharma, Neeraj</au><au>Shitharth, S.</au><au>G, Thippa Reddy</au><au>Thippa Reddy G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal</atitle><jtitle>Security and communication networks</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>In the recent past, handling the high dimensionality demonstrated in the auditory features of speech signals has been a primary focus for machine learning (ML-)based emotion recognition. The incorporation of high-dimensional characteristics in training datasets in the learning phase of ML models influences contemporary approaches to emotion prediction with significant false alerting. The curse of the excessive dimensionality of the training corpus is addressed in the majority of contemporary models. Modern models, on the other hand, place a greater emphasis on merging many classifiers, which can only increase emotion recognition accuracy even when the training corpus contains high-dimensional data points. “Ensemble Learning by High-Dimensional Acoustic Features (EL-HDAF)” is an innovative ensemble model that leverages the diversity assessment of feature values spanned over diversified classes to recommend the best features. Furthermore, the proposed technique employs a one-of-a-kind clustering process to limit the impact of high-dimensional feature values. The experimental inquiry evaluates and compares emotion forecasting using spoken audio data to current methods that use machine learning for emotion recognition. Fourfold cross-validation is used for performance analysis with the standard data corpus.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/8777026</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5528-7844</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-8114-5759</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2022-02, Vol.2022, p.1-10 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2638546907 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Accuracy Acoustics Algorithms Audio data Classification Clustering Data points Decision making Distance learning Emotion recognition Emotions Ensemble learning Feature recognition Identification Intelligent systems Machine learning Neural networks Physiology Speech Speech recognition Standard data |
title | Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20Learning%20by%20High-Dimensional%20Acoustic%20Features%20for%20Emotion%20Recognition%20from%20Speech%20Audio%20Signal&rft.jtitle=Security%20and%20communication%20networks&rft.au=Chalapathi,%20M.%20M.%20Venkata&rft.date=2022-02-28&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/8777026&rft_dat=%3Cproquest_cross%3E2638546907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638546907&rft_id=info:pmid/&rfr_iscdi=true |