Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes

According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-03, Vol.2022, p.1-12
Hauptverfasser: Zhang, Yue, Ye, Long, Fang, Li, Zhong, Wei, Hu, Fei, Zhang, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Zhang, Yue
Ye, Long
Fang, Li
Zhong, Wei
Hu, Fei
Zhang, Qin
description According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability.
doi_str_mv 10.1155/2022/5884625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638546716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638546716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQv-0saXlKhUoF1pZjOzSlJMV2hPr3uGrFktU9izMzmgvAOUbXGHM-IoiQEVeKCcIPwABzigolpDz8Y1Eeg5MYlwghiggegPnYt3bxZcJn037AtPBw3lV9TK2PEXY1nFVLbxO89SlH07VwbKJ3MMOLN6GYe7OCz82qSSZs4Kv1ee4UHNVmFf3ZPofg_f7ubfJYTGcPT5ObaWEplamQTJnKEUsNoc45yxQjjmNRcYRLzkqkvKiVLxUpBZXKKmkk485YxUWGkg7BxW7vOnTfvY9JL7s-tPmkJoIqzoTEIltXO8uGLsbga70OTf53ozHS29b0tjW9by3rlzt90bTO_DT_27-i4GpC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546716</pqid></control><display><type>article</type><title>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yue ; Ye, Long ; Fang, Li ; Zhong, Wei ; Hu, Fei ; Zhang, Qin</creator><contributor>Zhang, Yushu ; Yushu Zhang</contributor><creatorcontrib>Zhang, Yue ; Ye, Long ; Fang, Li ; Zhong, Wei ; Hu, Fei ; Zhang, Qin ; Zhang, Yushu ; Yushu Zhang</creatorcontrib><description>According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/5884625</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Adaptability ; Algorithms ; Cameras ; Datasets ; Object recognition ; Performance evaluation ; Rain ; Remote sensing ; Semantics ; Stability analysis</subject><ispartof>Wireless communications and mobile computing, 2022-03, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Yue Zhang et al.</rights><rights>Copyright © 2022 Yue Zhang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</citedby><cites>FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</cites><orcidid>0000-0001-9963-6110 ; 0000-0001-8510-2927 ; 0000-0002-1163-2914 ; 0000-0002-3562-5612 ; 0000-0001-9325-6299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Zhang, Yushu</contributor><contributor>Yushu Zhang</contributor><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ye, Long</creatorcontrib><creatorcontrib>Fang, Li</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><title>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</title><title>Wireless communications and mobile computing</title><description>According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability.</description><subject>Adaptability</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Rain</subject><subject>Remote sensing</subject><subject>Semantics</subject><subject>Stability analysis</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQv-0saXlKhUoF1pZjOzSlJMV2hPr3uGrFktU9izMzmgvAOUbXGHM-IoiQEVeKCcIPwABzigolpDz8Y1Eeg5MYlwghiggegPnYt3bxZcJn037AtPBw3lV9TK2PEXY1nFVLbxO89SlH07VwbKJ3MMOLN6GYe7OCz82qSSZs4Kv1ee4UHNVmFf3ZPofg_f7ubfJYTGcPT5ObaWEplamQTJnKEUsNoc45yxQjjmNRcYRLzkqkvKiVLxUpBZXKKmkk485YxUWGkg7BxW7vOnTfvY9JL7s-tPmkJoIqzoTEIltXO8uGLsbga70OTf53ozHS29b0tjW9by3rlzt90bTO_DT_27-i4GpC</recordid><startdate>20220305</startdate><enddate>20220305</enddate><creator>Zhang, Yue</creator><creator>Ye, Long</creator><creator>Fang, Li</creator><creator>Zhong, Wei</creator><creator>Hu, Fei</creator><creator>Zhang, Qin</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9963-6110</orcidid><orcidid>https://orcid.org/0000-0001-8510-2927</orcidid><orcidid>https://orcid.org/0000-0002-1163-2914</orcidid><orcidid>https://orcid.org/0000-0002-3562-5612</orcidid><orcidid>https://orcid.org/0000-0001-9325-6299</orcidid></search><sort><creationdate>20220305</creationdate><title>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</title><author>Zhang, Yue ; Ye, Long ; Fang, Li ; Zhong, Wei ; Hu, Fei ; Zhang, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptability</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Rain</topic><topic>Remote sensing</topic><topic>Semantics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ye, Long</creatorcontrib><creatorcontrib>Fang, Li</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yue</au><au>Ye, Long</au><au>Fang, Li</au><au>Zhong, Wei</au><au>Hu, Fei</au><au>Zhang, Qin</au><au>Zhang, Yushu</au><au>Yushu Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-03-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/5884625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9963-6110</orcidid><orcidid>https://orcid.org/0000-0001-8510-2927</orcidid><orcidid>https://orcid.org/0000-0002-1163-2914</orcidid><orcidid>https://orcid.org/0000-0002-3562-5612</orcidid><orcidid>https://orcid.org/0000-0001-9325-6299</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-03, Vol.2022, p.1-12
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2638546716
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Adaptability
Algorithms
Cameras
Datasets
Object recognition
Performance evaluation
Rain
Remote sensing
Semantics
Stability analysis
title Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20the%20Robustness%20of%20Object%20Detection%20Based%20on%20Near-Real%20Military%20Scenes&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Zhang,%20Yue&rft.date=2022-03-05&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/5884625&rft_dat=%3Cproquest_cross%3E2638546716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638546716&rft_id=info:pmid/&rfr_iscdi=true