Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes
According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pi...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-03, Vol.2022, p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Zhang, Yue Ye, Long Fang, Li Zhong, Wei Hu, Fei Zhang, Qin |
description | According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability. |
doi_str_mv | 10.1155/2022/5884625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638546716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638546716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQv-0saXlKhUoF1pZjOzSlJMV2hPr3uGrFktU9izMzmgvAOUbXGHM-IoiQEVeKCcIPwABzigolpDz8Y1Eeg5MYlwghiggegPnYt3bxZcJn037AtPBw3lV9TK2PEXY1nFVLbxO89SlH07VwbKJ3MMOLN6GYe7OCz82qSSZs4Kv1ee4UHNVmFf3ZPofg_f7ubfJYTGcPT5ObaWEplamQTJnKEUsNoc45yxQjjmNRcYRLzkqkvKiVLxUpBZXKKmkk485YxUWGkg7BxW7vOnTfvY9JL7s-tPmkJoIqzoTEIltXO8uGLsbga70OTf53ozHS29b0tjW9by3rlzt90bTO_DT_27-i4GpC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546716</pqid></control><display><type>article</type><title>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yue ; Ye, Long ; Fang, Li ; Zhong, Wei ; Hu, Fei ; Zhang, Qin</creator><contributor>Zhang, Yushu ; Yushu Zhang</contributor><creatorcontrib>Zhang, Yue ; Ye, Long ; Fang, Li ; Zhong, Wei ; Hu, Fei ; Zhang, Qin ; Zhang, Yushu ; Yushu Zhang</creatorcontrib><description>According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/5884625</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Adaptability ; Algorithms ; Cameras ; Datasets ; Object recognition ; Performance evaluation ; Rain ; Remote sensing ; Semantics ; Stability analysis</subject><ispartof>Wireless communications and mobile computing, 2022-03, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Yue Zhang et al.</rights><rights>Copyright © 2022 Yue Zhang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</citedby><cites>FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</cites><orcidid>0000-0001-9963-6110 ; 0000-0001-8510-2927 ; 0000-0002-1163-2914 ; 0000-0002-3562-5612 ; 0000-0001-9325-6299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Zhang, Yushu</contributor><contributor>Yushu Zhang</contributor><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ye, Long</creatorcontrib><creatorcontrib>Fang, Li</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><title>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</title><title>Wireless communications and mobile computing</title><description>According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability.</description><subject>Adaptability</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Rain</subject><subject>Remote sensing</subject><subject>Semantics</subject><subject>Stability analysis</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQv-0saXlKhUoF1pZjOzSlJMV2hPr3uGrFktU9izMzmgvAOUbXGHM-IoiQEVeKCcIPwABzigolpDz8Y1Eeg5MYlwghiggegPnYt3bxZcJn037AtPBw3lV9TK2PEXY1nFVLbxO89SlH07VwbKJ3MMOLN6GYe7OCz82qSSZs4Kv1ee4UHNVmFf3ZPofg_f7ubfJYTGcPT5ObaWEplamQTJnKEUsNoc45yxQjjmNRcYRLzkqkvKiVLxUpBZXKKmkk485YxUWGkg7BxW7vOnTfvY9JL7s-tPmkJoIqzoTEIltXO8uGLsbga70OTf53ozHS29b0tjW9by3rlzt90bTO_DT_27-i4GpC</recordid><startdate>20220305</startdate><enddate>20220305</enddate><creator>Zhang, Yue</creator><creator>Ye, Long</creator><creator>Fang, Li</creator><creator>Zhong, Wei</creator><creator>Hu, Fei</creator><creator>Zhang, Qin</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9963-6110</orcidid><orcidid>https://orcid.org/0000-0001-8510-2927</orcidid><orcidid>https://orcid.org/0000-0002-1163-2914</orcidid><orcidid>https://orcid.org/0000-0002-3562-5612</orcidid><orcidid>https://orcid.org/0000-0001-9325-6299</orcidid></search><sort><creationdate>20220305</creationdate><title>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</title><author>Zhang, Yue ; Ye, Long ; Fang, Li ; Zhong, Wei ; Hu, Fei ; Zhang, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-748abd2c3a23dddc4842d516b501954908e6f8e98296378c87a745dac85674593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptability</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Rain</topic><topic>Remote sensing</topic><topic>Semantics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ye, Long</creatorcontrib><creatorcontrib>Fang, Li</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yue</au><au>Ye, Long</au><au>Fang, Li</au><au>Zhong, Wei</au><au>Hu, Fei</au><au>Zhang, Qin</au><au>Zhang, Yushu</au><au>Yushu Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-03-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>According to the technical requirements of intelligent development of auxiliary combat system, we construct a visual intelligent test platform. A near-real military scene dataset based on physical rendering is built, which contains 11,000 remote sensing images collected by an analog camera taking pictures in different illumination, weather environment, camera shooting angle, and scene scale condition. Besides, we add a natural style transfer module for a single unmodeled military scene image’s multienvironment generation. We conduct experiments to evaluate the stability of several UAV remote sensing image object detection algorithms. Based on the quality and speed value of the tested algorithms, the adaptability scores in different environments are calculated. Furthermore, we propose a comprehensive evaluation index system of military remote object detection based on a hierarchical model. We envision that our comprehensive benchmark will play a role in the evaluation of algorithm capability for military object detection tasks and the improvement of training algorithm capability.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/5884625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9963-6110</orcidid><orcidid>https://orcid.org/0000-0001-8510-2927</orcidid><orcidid>https://orcid.org/0000-0002-1163-2914</orcidid><orcidid>https://orcid.org/0000-0002-3562-5612</orcidid><orcidid>https://orcid.org/0000-0001-9325-6299</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-03, Vol.2022, p.1-12 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2638546716 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Adaptability Algorithms Cameras Datasets Object recognition Performance evaluation Rain Remote sensing Semantics Stability analysis |
title | Benchmarking the Robustness of Object Detection Based on Near-Real Military Scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20the%20Robustness%20of%20Object%20Detection%20Based%20on%20Near-Real%20Military%20Scenes&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Zhang,%20Yue&rft.date=2022-03-05&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/5884625&rft_dat=%3Cproquest_cross%3E2638546716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638546716&rft_id=info:pmid/&rfr_iscdi=true |