Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel
In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators wi...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-03, Vol.2022, p.1-19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Butt, Saad Ihsan Yousaf, Saba Khan, Khuram Ali Matendo Mabela, Rostin Alsharif, Abdullah M. |
description | In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed. |
doi_str_mv | 10.1155/2022/7269033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638546683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638546683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</originalsourceid><addsrcrecordid>eNp90E9OwkAUBvCJ0UREdx5gEpdamT-dtrM0BISI0QUm7pqhfZUhZabMtAg77-ApPIc38SSWQFy6el_yfnkv-RC6pOSWUiF6jDDWi1kkCedHqENFxANBw_i4zYSFAWX89RSdeb8ghFFBkw7aDGHx_eV-Pj6fVTavVF1Dmx_BZeCC6bYCPDawalSpaw0eF9bhkXJLa3SmynKL-9asYYOHjclqbY1v-dqWa23e8GBTWQOm1qr822Nt8AM4A-U5OilU6eHiMLvoZTiY9kfB5Ol-3L-bBBnncR3wmIIsaEKLXM64IAWluQTCiMxnkECuGE1UNJM0TGQGjHPFQDGmIl5IxojgXXS1v1s5u2rA1-nCNs60L1MW8USEUZTwVt3sVeas9w6KtHJ6qdw2pSTddZvuuk0P3bb8es_n2uTqXf-vfwFAZHzx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546683</pqid></control><display><type>article</type><title>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Butt, Saad Ihsan ; Yousaf, Saba ; Khan, Khuram Ali ; Matendo Mabela, Rostin ; Alsharif, Abdullah M.</creator><contributor>Anwar, Muhammad Shoaib ; Muhammad Shoaib Anwar</contributor><creatorcontrib>Butt, Saad Ihsan ; Yousaf, Saba ; Khan, Khuram Ali ; Matendo Mabela, Rostin ; Alsharif, Abdullah M. ; Anwar, Muhammad Shoaib ; Muhammad Shoaib Anwar</creatorcontrib><description>In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/7269033</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Approximation ; Calculus ; Convex analysis ; Engineering ; Exponential functions ; Fractional calculus ; Inequalities ; Information theory ; Kernels ; Numerical analysis ; Operators (mathematics) ; Science</subject><ispartof>Mathematical problems in engineering, 2022-03, Vol.2022, p.1-19</ispartof><rights>Copyright © 2022 Saad Ihsan Butt et al.</rights><rights>Copyright © 2022 Saad Ihsan Butt et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</citedby><cites>FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</cites><orcidid>0000-0001-7192-8269 ; 0000-0002-7669-2141 ; 0000-0001-5208-5200 ; 0000-0001-8196-4108 ; 0000-0002-3468-2295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><contributor>Anwar, Muhammad Shoaib</contributor><contributor>Muhammad Shoaib Anwar</contributor><creatorcontrib>Butt, Saad Ihsan</creatorcontrib><creatorcontrib>Yousaf, Saba</creatorcontrib><creatorcontrib>Khan, Khuram Ali</creatorcontrib><creatorcontrib>Matendo Mabela, Rostin</creatorcontrib><creatorcontrib>Alsharif, Abdullah M.</creatorcontrib><title>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</title><title>Mathematical problems in engineering</title><description>In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed.</description><subject>Approximation</subject><subject>Calculus</subject><subject>Convex analysis</subject><subject>Engineering</subject><subject>Exponential functions</subject><subject>Fractional calculus</subject><subject>Inequalities</subject><subject>Information theory</subject><subject>Kernels</subject><subject>Numerical analysis</subject><subject>Operators (mathematics)</subject><subject>Science</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E9OwkAUBvCJ0UREdx5gEpdamT-dtrM0BISI0QUm7pqhfZUhZabMtAg77-ApPIc38SSWQFy6el_yfnkv-RC6pOSWUiF6jDDWi1kkCedHqENFxANBw_i4zYSFAWX89RSdeb8ghFFBkw7aDGHx_eV-Pj6fVTavVF1Dmx_BZeCC6bYCPDawalSpaw0eF9bhkXJLa3SmynKL-9asYYOHjclqbY1v-dqWa23e8GBTWQOm1qr822Nt8AM4A-U5OilU6eHiMLvoZTiY9kfB5Ol-3L-bBBnncR3wmIIsaEKLXM64IAWluQTCiMxnkECuGE1UNJM0TGQGjHPFQDGmIl5IxojgXXS1v1s5u2rA1-nCNs60L1MW8USEUZTwVt3sVeas9w6KtHJ6qdw2pSTddZvuuk0P3bb8es_n2uTqXf-vfwFAZHzx</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Butt, Saad Ihsan</creator><creator>Yousaf, Saba</creator><creator>Khan, Khuram Ali</creator><creator>Matendo Mabela, Rostin</creator><creator>Alsharif, Abdullah M.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7192-8269</orcidid><orcidid>https://orcid.org/0000-0002-7669-2141</orcidid><orcidid>https://orcid.org/0000-0001-5208-5200</orcidid><orcidid>https://orcid.org/0000-0001-8196-4108</orcidid><orcidid>https://orcid.org/0000-0002-3468-2295</orcidid></search><sort><creationdate>20220302</creationdate><title>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</title><author>Butt, Saad Ihsan ; Yousaf, Saba ; Khan, Khuram Ali ; Matendo Mabela, Rostin ; Alsharif, Abdullah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Calculus</topic><topic>Convex analysis</topic><topic>Engineering</topic><topic>Exponential functions</topic><topic>Fractional calculus</topic><topic>Inequalities</topic><topic>Information theory</topic><topic>Kernels</topic><topic>Numerical analysis</topic><topic>Operators (mathematics)</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butt, Saad Ihsan</creatorcontrib><creatorcontrib>Yousaf, Saba</creatorcontrib><creatorcontrib>Khan, Khuram Ali</creatorcontrib><creatorcontrib>Matendo Mabela, Rostin</creatorcontrib><creatorcontrib>Alsharif, Abdullah M.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butt, Saad Ihsan</au><au>Yousaf, Saba</au><au>Khan, Khuram Ali</au><au>Matendo Mabela, Rostin</au><au>Alsharif, Abdullah M.</au><au>Anwar, Muhammad Shoaib</au><au>Muhammad Shoaib Anwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-03-02</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/7269033</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7192-8269</orcidid><orcidid>https://orcid.org/0000-0002-7669-2141</orcidid><orcidid>https://orcid.org/0000-0001-5208-5200</orcidid><orcidid>https://orcid.org/0000-0001-8196-4108</orcidid><orcidid>https://orcid.org/0000-0002-3468-2295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-03, Vol.2022, p.1-19 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2638546683 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Approximation Calculus Convex analysis Engineering Exponential functions Fractional calculus Inequalities Information theory Kernels Numerical analysis Operators (mathematics) Science |
title | Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fej%C3%A9r%E2%80%93Pachpatte%E2%80%93Mercer-Type%20Inequalities%20for%20Harmonically%20Convex%20Functions%20Involving%20Exponential%20Function%20in%20Kernel&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Butt,%20Saad%20Ihsan&rft.date=2022-03-02&rft.volume=2022&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/7269033&rft_dat=%3Cproquest_cross%3E2638546683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638546683&rft_id=info:pmid/&rfr_iscdi=true |