Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel

In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-03, Vol.2022, p.1-19
Hauptverfasser: Butt, Saad Ihsan, Yousaf, Saba, Khan, Khuram Ali, Matendo Mabela, Rostin, Alsharif, Abdullah M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Butt, Saad Ihsan
Yousaf, Saba
Khan, Khuram Ali
Matendo Mabela, Rostin
Alsharif, Abdullah M.
description In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed.
doi_str_mv 10.1155/2022/7269033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638546683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638546683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</originalsourceid><addsrcrecordid>eNp90E9OwkAUBvCJ0UREdx5gEpdamT-dtrM0BISI0QUm7pqhfZUhZabMtAg77-ApPIc38SSWQFy6el_yfnkv-RC6pOSWUiF6jDDWi1kkCedHqENFxANBw_i4zYSFAWX89RSdeb8ghFFBkw7aDGHx_eV-Pj6fVTavVF1Dmx_BZeCC6bYCPDawalSpaw0eF9bhkXJLa3SmynKL-9asYYOHjclqbY1v-dqWa23e8GBTWQOm1qr822Nt8AM4A-U5OilU6eHiMLvoZTiY9kfB5Ol-3L-bBBnncR3wmIIsaEKLXM64IAWluQTCiMxnkECuGE1UNJM0TGQGjHPFQDGmIl5IxojgXXS1v1s5u2rA1-nCNs60L1MW8USEUZTwVt3sVeas9w6KtHJ6qdw2pSTddZvuuk0P3bb8es_n2uTqXf-vfwFAZHzx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546683</pqid></control><display><type>article</type><title>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Butt, Saad Ihsan ; Yousaf, Saba ; Khan, Khuram Ali ; Matendo Mabela, Rostin ; Alsharif, Abdullah M.</creator><contributor>Anwar, Muhammad Shoaib ; Muhammad Shoaib Anwar</contributor><creatorcontrib>Butt, Saad Ihsan ; Yousaf, Saba ; Khan, Khuram Ali ; Matendo Mabela, Rostin ; Alsharif, Abdullah M. ; Anwar, Muhammad Shoaib ; Muhammad Shoaib Anwar</creatorcontrib><description>In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/7269033</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Approximation ; Calculus ; Convex analysis ; Engineering ; Exponential functions ; Fractional calculus ; Inequalities ; Information theory ; Kernels ; Numerical analysis ; Operators (mathematics) ; Science</subject><ispartof>Mathematical problems in engineering, 2022-03, Vol.2022, p.1-19</ispartof><rights>Copyright © 2022 Saad Ihsan Butt et al.</rights><rights>Copyright © 2022 Saad Ihsan Butt et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</citedby><cites>FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</cites><orcidid>0000-0001-7192-8269 ; 0000-0002-7669-2141 ; 0000-0001-5208-5200 ; 0000-0001-8196-4108 ; 0000-0002-3468-2295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><contributor>Anwar, Muhammad Shoaib</contributor><contributor>Muhammad Shoaib Anwar</contributor><creatorcontrib>Butt, Saad Ihsan</creatorcontrib><creatorcontrib>Yousaf, Saba</creatorcontrib><creatorcontrib>Khan, Khuram Ali</creatorcontrib><creatorcontrib>Matendo Mabela, Rostin</creatorcontrib><creatorcontrib>Alsharif, Abdullah M.</creatorcontrib><title>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</title><title>Mathematical problems in engineering</title><description>In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed.</description><subject>Approximation</subject><subject>Calculus</subject><subject>Convex analysis</subject><subject>Engineering</subject><subject>Exponential functions</subject><subject>Fractional calculus</subject><subject>Inequalities</subject><subject>Information theory</subject><subject>Kernels</subject><subject>Numerical analysis</subject><subject>Operators (mathematics)</subject><subject>Science</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E9OwkAUBvCJ0UREdx5gEpdamT-dtrM0BISI0QUm7pqhfZUhZabMtAg77-ApPIc38SSWQFy6el_yfnkv-RC6pOSWUiF6jDDWi1kkCedHqENFxANBw_i4zYSFAWX89RSdeb8ghFFBkw7aDGHx_eV-Pj6fVTavVF1Dmx_BZeCC6bYCPDawalSpaw0eF9bhkXJLa3SmynKL-9asYYOHjclqbY1v-dqWa23e8GBTWQOm1qr822Nt8AM4A-U5OilU6eHiMLvoZTiY9kfB5Ol-3L-bBBnncR3wmIIsaEKLXM64IAWluQTCiMxnkECuGE1UNJM0TGQGjHPFQDGmIl5IxojgXXS1v1s5u2rA1-nCNs60L1MW8USEUZTwVt3sVeas9w6KtHJ6qdw2pSTddZvuuk0P3bb8es_n2uTqXf-vfwFAZHzx</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Butt, Saad Ihsan</creator><creator>Yousaf, Saba</creator><creator>Khan, Khuram Ali</creator><creator>Matendo Mabela, Rostin</creator><creator>Alsharif, Abdullah M.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7192-8269</orcidid><orcidid>https://orcid.org/0000-0002-7669-2141</orcidid><orcidid>https://orcid.org/0000-0001-5208-5200</orcidid><orcidid>https://orcid.org/0000-0001-8196-4108</orcidid><orcidid>https://orcid.org/0000-0002-3468-2295</orcidid></search><sort><creationdate>20220302</creationdate><title>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</title><author>Butt, Saad Ihsan ; Yousaf, Saba ; Khan, Khuram Ali ; Matendo Mabela, Rostin ; Alsharif, Abdullah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-371e9f181fd9b350f11d9e0209dbe8eda218a6b91489ce233a2ea22a63f922053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Calculus</topic><topic>Convex analysis</topic><topic>Engineering</topic><topic>Exponential functions</topic><topic>Fractional calculus</topic><topic>Inequalities</topic><topic>Information theory</topic><topic>Kernels</topic><topic>Numerical analysis</topic><topic>Operators (mathematics)</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butt, Saad Ihsan</creatorcontrib><creatorcontrib>Yousaf, Saba</creatorcontrib><creatorcontrib>Khan, Khuram Ali</creatorcontrib><creatorcontrib>Matendo Mabela, Rostin</creatorcontrib><creatorcontrib>Alsharif, Abdullah M.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butt, Saad Ihsan</au><au>Yousaf, Saba</au><au>Khan, Khuram Ali</au><au>Matendo Mabela, Rostin</au><au>Alsharif, Abdullah M.</au><au>Anwar, Muhammad Shoaib</au><au>Muhammad Shoaib Anwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-03-02</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/7269033</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7192-8269</orcidid><orcidid>https://orcid.org/0000-0002-7669-2141</orcidid><orcidid>https://orcid.org/0000-0001-5208-5200</orcidid><orcidid>https://orcid.org/0000-0001-8196-4108</orcidid><orcidid>https://orcid.org/0000-0002-3468-2295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-03, Vol.2022, p.1-19
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2638546683
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Approximation
Calculus
Convex analysis
Engineering
Exponential functions
Fractional calculus
Inequalities
Information theory
Kernels
Numerical analysis
Operators (mathematics)
Science
title Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fej%C3%A9r%E2%80%93Pachpatte%E2%80%93Mercer-Type%20Inequalities%20for%20Harmonically%20Convex%20Functions%20Involving%20Exponential%20Function%20in%20Kernel&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Butt,%20Saad%20Ihsan&rft.date=2022-03-02&rft.volume=2022&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/7269033&rft_dat=%3Cproquest_cross%3E2638546683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638546683&rft_id=info:pmid/&rfr_iscdi=true